Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of Salmonella enterica that cause typhoid

Abstract

Salmonella enterica serovars often have a broad host range, and some cause both gastrointestinal and systemic disease. But the serovars Paratyphi A and Typhi are restricted to humans and cause only systemic disease. It has been estimated that Typhi arose in the last few thousand years. The sequence and microarray analysis of the Paratyphi A genome indicates that it is similar to the Typhi genome but suggests that it has a more recent evolutionary origin. Both genomes have independently accumulated many pseudogenes among their 4,400 protein coding sequences: 173 in Paratyphi A and 210 in Typhi. The recent convergence of these two similar genomes on a similar phenotype is subtly reflected in their genotypes: only 30 genes are degraded in both serovars. Nevertheless, these 30 genes include three known to be important in gastroenteritis, which does not occur in these serovars, and four for Salmonella-translocated effectors, which are normally secreted into host cells to subvert host functions. Loss of function also occurs by mutation in different genes in the same pathway (e.g., in chemotaxis and in the production of fimbriae).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The genome of Paratyphi A.
Figure 2: Visualization of gene content differences among strains of Paratyphi A.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Ivanoff, B. Typhoid fever: global situation and WHO recommendations. Southeast Asian J. Trop. Med. Public Health 26, 1–6 (1995).

    Google Scholar 

  2. Parry, C.M., Hien, T.T., Dougan, G., White, N.J. & Farrar, J.J. Typhoid fever. N. Engl. J. Med. 347, 1770–1782 (2002).

    Article  CAS  Google Scholar 

  3. Sood, S. et al. Paratyphoid fever in India: An emerging problem. Emerg. Infect. Dis. 5, 483–484 (1999).

    Article  CAS  Google Scholar 

  4. Hafiz, S. et al. Epidemiology of salmonellosis and its sensitivity in Karachi. J. Pak. Med. Assoc. 43, 178–179 (1993).

    CAS  PubMed  Google Scholar 

  5. Akinyemi, K.O. et al. Prevalence of multi-drug resistant Salmonella typhi among clinically diagnosed typhoid fever patients in Lagos, Nigeria. Z. Naturforsch. [C] 55, 489–493 (2000).

    Article  CAS  Google Scholar 

  6. Pearson, R.D. & Guerrant, R.L. Enteric fever and other causes of abdominal symptoms with fever. in Principles Practices of Infectious Diseases (eds. Mandell, G.L., Bennet, J.E. & Dolin, R.) 998–1012 (Churchill Livingstone, New York, 1995).

    Google Scholar 

  7. Threlfall, E.J. et al. Trends in antimicrobial drug resistance in Salmonella enterica serotypes Typhi and Paratyphi A isolated in Europe, 1999-2001. Int. J. Antimicrob. Agents 22, 487–491 (2003).

    Article  CAS  Google Scholar 

  8. Smith, J., Leke, R., Adams, A. & Tangermann, R.H. Certification of polio eradication: process and lessons learned. Bull. World Health Organ. 82, 24–30 (2004).

    PubMed  PubMed Central  Google Scholar 

  9. Konadu, E.Y. et al. Phase 1 and phase 2 studies of Salmonella enterica serovar paratyphi A O-specific polysaccharide-tetanus toxoid conjugates in adults, teenagers, and 2- to 4-year-old children in Vietnam. Infect. Immun. 68, 1529–1534 (2000).

    Article  CAS  Google Scholar 

  10. Porwollik, S., Wong, R.M. & McClelland, M. Evolutionary genomics of Salmonella: gene acquisitions revealed by microarray analysis. Proc. Natl. Acad. Sci. USA 99, 8956–8961 (2002).

    Article  CAS  Google Scholar 

  11. Chan, K. et al. Genomic comparison of Salmonella enterica serovars and Salmonella bongori by use of an S. enterica serovar Typhimurium DNA microarray. J. Bacteriol. 185, 553–563 (2003).

    Article  CAS  Google Scholar 

  12. Porwollik, S. et al. Characterization of Salmonella enterica subspecies I genovars using microarrays. J. Bacteriol. 186, 5883–5898 (2004).

    Article  CAS  Google Scholar 

  13. Reeves, P. Evolution of Salmonella O antigen variation by interspecific gene transfer on a large scale. Trends Genet. 9, 17–22 (1993).

    Article  CAS  Google Scholar 

  14. Kidgell, C. et al. Salmonella typhi, the causative agent of typhoid fever, is approximately 50,000 years old. Infect. Genet. Evol. 2, 39–45 (2002).

    Article  Google Scholar 

  15. Boyd, E.F. et al. Salmonella reference collection B (SARB): strains of 37 serovars of subspecies I. J. Gen. Microbiol. 139, 1125–1132 (1993).

    Article  CAS  Google Scholar 

  16. Liu, S.L. & Sanderson, K.E. The chromosome of Salmonella paratyphi A is inverted by recombination between rrnH and rrnG . J. Bacteriol. 177, 6585–6592 (1995).

    Article  CAS  Google Scholar 

  17. Parkhill, J. et al. Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature 413, 848–852 (2001).

    Article  CAS  Google Scholar 

  18. Deng, W. et al. Comparative genomics of Salmonella enterica serovar Typhi strains Ty2 and CT18. J. Bacteriol. 185, 2330–2337 (2003).

    Article  CAS  Google Scholar 

  19. McClelland, M. et al. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature 413, 852–856 (2001).

    Article  CAS  Google Scholar 

  20. Nair, S. et al. Salmonella enterica serovar Typhi strains from which SPI7, a 134-kilobase island with genes for Vi exopolysaccharide and other functions, has been deleted. J. Bacteriol. 186, 3214–3223 (2004).

    Article  CAS  Google Scholar 

  21. Boyd, E.F., Porwollik, S., Blackmer, F. & McClelland, M. Differences in gene content among Salmonella enterica serovar Typhi isolates. J. Clin. Microbiol. 41, 3823–3828 (2003).

    Article  CAS  Google Scholar 

  22. Thomson, N. et al. The role of prophage-like elements in the diversity of Salmonella enterica serovars. J. Mol. Biol. 339, 279–300 (2004).

    Article  CAS  Google Scholar 

  23. Mmolawa, P.T., Schmieger, H. & Heuzenroeder, M.W. Bacteriophage ST64B, a genetic mosaic of genes from diverse sources isolated from Salmonella enterica serovar Typhimurium DT 64. J. Bacteriol. 185, 6481–6485 (2003).

    Article  CAS  Google Scholar 

  24. Porwollik, S., Frye, J., Florea, L., Blackmer, F. & McClelland, M. A non-redundant microarray of genes for two related bacteria. Nucleic Acids Res. 31, 1869–1876 (2003).

    Article  CAS  Google Scholar 

  25. Parkhill, J. et al. Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella parapertussis and Bordetella bronchiseptica . Nat. Genet. 35, 32–40 (2003).

    Article  Google Scholar 

  26. Cole, S.T. et al. Massive gene decay in the leprosy bacillus. Nature 409, 1007–1011 (2001).

    Article  CAS  Google Scholar 

  27. Andersson, J.O. & Andersson, S.G. Pseudogenes, junk DNA, and the dynamics of Rickettsia genomes. Mol. Biol. Evol. 18, 829–839 (2001).

    Article  CAS  Google Scholar 

  28. Alsmark, C.M. et al. The louse-borne human pathogen Bartonella quintana is a genomic derivative of the zoonotic agent Bartonella henselae . Proc. Natl. Acad. Sci. USA 101, 9716–9721 (2004).

    Article  CAS  Google Scholar 

  29. Parkhill, J. et al. Genome sequence of Yersinia pestis, the causative agent of plague. Nature 413, 523–527 (2001).

    Article  CAS  Google Scholar 

  30. Wei, J. et al. Complete genome sequence and comparative genomics of Shigella flexneri serotype 2a strain 2457T. Infect. Immun. 71, 2775–2786 (2003).

    Article  CAS  Google Scholar 

  31. Jin, Q. et al. Genome sequence of Shigella flexneri 2a: insights into pathogenicity through comparison with genomes of Escherichia coli K12 and O157. Nucleic Acids Res. 30, 4432–4441 (2002).

    Article  CAS  Google Scholar 

  32. Pupo, G.M., Lan, R. & Reeves, P.R. Multiple independent origins of Shigella clones of Escherichia coli and convergent evolution of many of their characteristics. Proc. Natl. Acad. Sci. USA 97, 10567–10572 (2000).

    Article  CAS  Google Scholar 

  33. Wren, B.W. The yersiniae–a model genus to study the rapid evolution of bacterial pathogens. Nat. Rev. Microbiol. 1, 55–64 (2003).

    Article  CAS  Google Scholar 

  34. Kingsley, R.A. et al. Molecular and phenotypic analysis of the CS54 island of Salmonella enterica serotype Typhimurium: identification of intestinal colonization and persistence determinants. Infect. Immun. 71, 629–640 (2003).

    Article  CAS  Google Scholar 

  35. Zhang, S. et al. The Salmonella enterica serotype typhimurium effector proteins SipA, SopA, SopB, SopD, and SopE2 act in concert to induce diarrhea in calves. Infect. Immun. 70, 3843–3855 (2002).

    Article  CAS  Google Scholar 

  36. Miao, E.A. & Miller, S.I. A conserved amino acid sequence directing intracellular type III secretion by Salmonella typhimurium . Proc. Natl. Acad. Sci. USA 97, 7539–7544 (2000).

    Article  CAS  Google Scholar 

  37. Tsolis, R.M. et al. Identification of a putative Salmonella enterica serotype Typhimurium host range factor with homology to IpaH and YopM by signature-tagged mutagenesis. Infect. Immun. 67, 6385–6393 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Brumell, J.H. et al. SopD2 is a novel type III secreted effector of Salmonella typhimurium that targets late endocytic compartments upon delivery into host cells. Traffic 4, 36–48 (2003).

    Article  CAS  Google Scholar 

  39. Freeman, J.A., Ohl, M.E. & Miller, S.I. The Salmonella enterica serovar typhimurium translocated effectors SseJ and SifB are targeted to the Salmonella-containing vacuole. Infect. Immun. 71, 418–427 (2003).

    Article  CAS  Google Scholar 

  40. Buchwald, D.S. & Blaser, M.J. A review of human salmonellosis: II. Duration of excretion following infection with nontyphi Salmonella. Rev. Infect. Dis. 6, 345–356 (1984).

    Article  CAS  Google Scholar 

  41. Hoffman, T.A., Ruiz, C.J., Counts, G.W., Sachs, J.M. & Nitzkin, J.L. Waterborne typhoid fever in Dade County, Florida. Clinical and therapeutic evaluation of 105 bacteremic patients. Am. J. Med. 59, 481–487 (1975).

    Article  CAS  Google Scholar 

  42. Edelman, R. & Levine, M.M. Summary of an international workshop on typhoid fever. Rev. Infect. Di.s 8, 329–349 (1986).

    Article  CAS  Google Scholar 

  43. Miao, E.A. et al. Salmonella effectors translocated across the vacuolar membrane interact with the actin cytoskeleton. Mol. Microbiol. 48, 401–415 (2003).

    Article  CAS  Google Scholar 

  44. Bren, A. & Eisenbach, M. How signals are heard during bacterial chemotaxis: protein-protein interactions in sensory signal propagation. J. Bacteriol. 182, 6865–6873 (2000).

    Article  CAS  Google Scholar 

  45. Welch, R.A. et al. Extensive mosaic structure revealed by the complete genome sequence of uropathogenic Escherichia coli. Proc. Natl. Acad. Sci. USA 99, 17020–17024 (2002).

    Article  CAS  Google Scholar 

  46. Jones, B.D., Lee, C.A. & Falkow, S. Invasion by Salmonella typhimurium is affected by the direction of flagellar rotation. Infect. Immun. 60, 2475–2480 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Butler, S.M. & Camilli, A. Both chemotaxis and net motility greatly influence the infectivity of Vibrio cholerae. Proc. Natl. Acad. Sci. USA 101, 5018–5023 (2004).

    Article  CAS  Google Scholar 

  48. Silverman, M. & Simon, M. Phase variation: genetic analysis of switching mutants. Cell 19, 845–854 (1980).

    Article  CAS  Google Scholar 

  49. Naderer, M., Brust, J.R., Knowle, D. & Blumenthal, R.M. Mobility of a restriction-modification system revealed by its genetic contexts in three hosts. J. Bacteriol. 184, 2411–2419 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K.M. Wylie for coordinating the fosmid production and sequencing, J. Reen and C. Choy for assistance with microarrays, M. Gibson for assistance with the circular genome and F. Long for assistance with the website. This work was supported by grants from the US National Institute of Allergy and Infectious Diseases to R.W. and M. McClelland and by the generosity of S. Kimmel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael McClelland.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

Genome annotation: Salmonella enterica serovar Paratyphi A ATCC9150. (PDF 352 kb)

Supplementary Fig. 2

Detection of phage SPA-3 DNA in supernatants of SPA liquid cultures after Mitomycin C treatment. (PDF 89 kb)

Supplementary Table 1

Genome annotation: Salmonella enterica serovar Paratyphi A ATCC9150. (XLS 7125 kb)

Supplementary Table 2

Comparison of gene content among twelve Paratyphi A strains. (PDF 6 kb)

Supplementary Table 3

Pseudogenes in Paratyphi A. (XLS 55 kb)

Supplementary Table 4

Putative orthologs of genes in Paratyphi A that are predicted to be pseudogenes in Typhi, Shigella flexneri, or Yersinia pestis. (XLS 354 kb)

Supplementary Table 5

New predicted pseudogenes in Typhi. (PDF 7 kb)

Supplementary Note

Further examples of potential functional consequences of pseudogenes. (PDF 17 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

McClelland, M., Sanderson, K., Clifton, S. et al. Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of Salmonella enterica that cause typhoid. Nat Genet 36, 1268–1274 (2004). https://doi.org/10.1038/ng1470

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1470

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing