Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana

Abstract

MicroRNAs (miRNAs) in plants and animals function as post-transcriptional regulators of target genes, many of which are involved in multicellular development. miRNAs guide effector complexes to target mRNAs through base-pair complementarity, facilitating site-specific cleavage or translational repression. Biogenesis of miRNAs involves nucleolytic processing of a precursor transcript with extensive foldback structure. Here, we provide evidence that genes encoding miRNAs in plants originated by inverted duplication of target gene sequences. Several recently evolved genes encoding miRNAs in Arabidopsis thaliana and other small RNA–generating loci possess the hallmarks of inverted duplication events that formed the arms on each side of their respective foldback precursors. We propose a model for miRNA evolution that suggests a mechanism for de novo generation of new miRNA genes with unique target specificities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Flowchart for identification of miRNA foldbacks and endogenous small RNA loci with properties that are consistent with derivation by inverted duplication from protein coding genes.
Figure 2: Computational analysis of miRNA and endogenous small RNA–generating foldback sequences.
Figure 3: Genomic regions corresponding to A. thaliana MIR161, MIR163 and the small RNA–generating locus ASRP1729.
Figure 4: Similarity between foldback arms and protein-coding genes.
Figure 5: Biogenesis and function of A. thaliana miR161, miR163 and ASRP1729.
Figure 6: Phylogenetic analysis of MIR161 and MIR163 foldback arms and target families and of ASRP1729 foldback arms and DC1 domain–containing genes.
Figure 7: Inverted duplication model for miRNA gene evolution in plants.

Similar content being viewed by others

References

  1. Bartel, D. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    Article  CAS  Google Scholar 

  2. Ketting, R.F. et al. Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev. 15, 2654–2659 (2001).

    Article  CAS  Google Scholar 

  3. Hutvagner, G. et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834–838 (2001).

    Article  CAS  Google Scholar 

  4. Lee, Y. et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415–419 (2003).

    Article  CAS  Google Scholar 

  5. Park, W., Li, J., Song, R., Messing, J. & Chen, X. CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana . Curr. Biol. 12, 1484–1495 (2002).

    Article  CAS  Google Scholar 

  6. Kurihara, Y. & Watanabe, Y. Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. Proc. Natl. Acad. Sci. USA 101, 12753–12758 (2004).

    Article  CAS  Google Scholar 

  7. Reinhart, B.J., Weinstein, E.G., Rhoades, M.W., Bartel, B. & Bartel, D.P. MicroRNAs in plants. Genes Dev. 16, 1616–1626 (2002).

    Article  CAS  Google Scholar 

  8. Finnegan, E.J. & Matzke, M.A. The small RNA world. J. Cell Sci. 116, 4689–4693 (2003).

    Article  CAS  Google Scholar 

  9. Floyd, S.K. & Bowman, J.L. Gene regulation: ancient microRNA target sequences in plants. Nature 428, 485–486 (2004).

    Article  CAS  Google Scholar 

  10. Pasquinelli, A.E. et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408, 86–89 (2000).

    Article  CAS  Google Scholar 

  11. Meyerowitz, E.M. Plants compared to animals: the broadest comparative study of development. Science 295, 1482–1485 (2002).

    Article  CAS  Google Scholar 

  12. Poethig, R.S. Life with 25,000 genes. Genome Res. 11, 313–316 (2001).

    Article  CAS  Google Scholar 

  13. Jones-Rhoades, M.W. & Bartel, D.P. Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol. Cell 14, 787–799 (2004).

    Article  CAS  Google Scholar 

  14. Griffiths-Jones, S., Bateman, A., Marshall, M., Khanna, A. & Eddy, S.R. Rfam: an RNA family database. Nucleic Acids Res. 31, 439–441 (2003).

    Article  CAS  Google Scholar 

  15. Palatnik, J.F. et al. Control of leaf morphogenesis by microRNAs. Nature 425, 257–263 (2003).

    Article  CAS  Google Scholar 

  16. Aukerman, M.J. & Sakai, H. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15, 2730–2741 (2003).

    Article  CAS  Google Scholar 

  17. Chen, X. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303, 2022–2025 (2004).

    Article  CAS  Google Scholar 

  18. Mallory, A.C., Dugas, D.V., Bartel, D.P. & Bartel, B. MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr. Biol. 14, 1035–106 (2004).

    Article  CAS  Google Scholar 

  19. Achard, P., Herr, A., Baulcombe, D.C. & Harberd, N.P. Modulation of floral development by a gibberellin-regulated microRNA. Development 131, 3357–3365 (2004).

    Article  CAS  Google Scholar 

  20. Emery, J.F. et al. Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr. Biol. 13, 1768–1774 (2003).

    Article  CAS  Google Scholar 

  21. Laufs, P., Peaucelle, A., Morin, H. & Traas, J. MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development 131, 4311–4322 (2004).

    Article  CAS  Google Scholar 

  22. Sunkar, R. & Zhu, J.K. Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis . Plant Cell 16, 2001–2019 (2004).

    Article  CAS  Google Scholar 

  23. Xie, Z., Kasschau, K.D. & Carrington, J.C. Negative feedback regulation of Dicer-Like1 in Arabidopsis by microRNA-guided mRNA degradation. Curr. Biol. 13, 784–789 (2003).

    Article  CAS  Google Scholar 

  24. Vaucheret, H., Vazquez, F., Crete, P. & Bartel, D.P. The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev. 18, 1187–117 (2004).

    Article  CAS  Google Scholar 

  25. Levine, M. & Tjian, R. Transcription regulation and animal diversity. Nature 424, 147–151 (2003).

    Article  CAS  Google Scholar 

  26. Teichmann, S.A. & Babu, M.M. Gene regulatory network growth by duplication. Nat. Genet. 36, 492–496 (2004).

    Article  CAS  Google Scholar 

  27. Rhoades, M.W. et al. Prediction of plant microRNA targets. Cell 110, 513–520 (2002).

    Article  CAS  Google Scholar 

  28. Vazquez, F., Gasciolli, V., Crete, P. & Vaucheret, H. The nuclear dsRNA binding protein HYL1 is required for microRNA accumulation and plant development, but not posttranscriptional transgene silencing. Curr. Biol. 14, 346–351 (2004).

    Article  CAS  Google Scholar 

  29. Dunoyer, P., Lecellier, C.H., Parizotto, E.A., Himber, C. & Voinnet, O. Probing the microRNA and small interfering RNA pathways with virus-encoded suppressors of RNA silencing. Plant Cell 16, 1235–1250 (2004).

    Article  CAS  Google Scholar 

  30. Llave, C., Kasschau, K.D., Rector, M.A. & Carrington, J.C. Endogenous and silencing-associated small RNAs in plants. Plant Cell 14, 1605–1619 (2002).

    Article  CAS  Google Scholar 

  31. Papp, I. et al. Evidence for nuclear processing of plant micro RNA and short interfering RNA precursors. Plant Physiol. 132, 1382–1390 (2003).

    Article  CAS  Google Scholar 

  32. Xie, Z. et al. Genetic and functional diversification of small RNA pathways in plants. PLoS Biol. 2, E104 (2004).

    Article  Google Scholar 

  33. Peragine, A., Yoshikawa, M., Wu, G., Albrecht, H.L. & Poethig, R.S. SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis . Genes Dev. 18, 2368–2379 (2004).

    Article  CAS  Google Scholar 

  34. Vazquez, F. et al. Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol. Cell 16, 69–79 (2004).

    Article  CAS  Google Scholar 

  35. Schauer, S.E., Jacobsen, S.E., Meinke, D.W. & Ray, A. DICER-LIKE1: blind men and elephants in Arabidopsis development. Trends Plant Sci. 7, 487–491 (2002).

    Article  CAS  Google Scholar 

  36. Holder, M. & Lewis, P.O. Phylogeny estimation: traditional and Bayesian approaches. Nat. Rev. Genet. 4, 275–284 (2003).

    Article  CAS  Google Scholar 

  37. Mallory, A.C. et al. MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5′ region. EMBO J. 23, 3356–3364 (2004).

    Article  CAS  Google Scholar 

  38. Kasschau, K.D. et al. P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA unction. Dev. Cell 4, 205–217 (2003).

    Article  CAS  Google Scholar 

  39. Bartel, B. & Bartel, D.P. MicroRNAs: at the root of plant development? Plant Physiol. 132, 709–717 (2003).

    Article  CAS  Google Scholar 

  40. Llave, C., Xie, Z., Kasschau, K.D. & Carrington, J.C. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297, 2053–2056 (2002).

    Article  CAS  Google Scholar 

  41. Herbert, A. The four Rs of RNA-directed evolution. Nat. Genet. 36, 19–25 (2004).

    Article  CAS  Google Scholar 

  42. Bartel, D.P. & Chen, C.Z. Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat. Rev. Genet. 5, 396–400 (2004).

    Article  CAS  Google Scholar 

  43. Hurles, M. Gene duplication: the genomic trade in spare parts. PLoS Biol. 2, E206 (2004).

    Article  Google Scholar 

  44. Rice, P., Longden, I. & Bleasby, A. EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet. 16, 276–277 (2000).

    Article  CAS  Google Scholar 

  45. Hofacker, I.L. Vienna RNA secondary structure server. Nucleic Acids Res. 31, 3429–3431 (2003).

    Article  CAS  Google Scholar 

  46. Lin, J.-T. Alternatives to Hamaker's approximations to the cumulative normal distribution and its inverse. Statistician 37, 413–414 (1988).

    Article  Google Scholar 

  47. Notredame, C., Higgins, D.G. & Heringa, J. T-Coffee: A novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 302, 205–217 (2000).

    Article  CAS  Google Scholar 

  48. Huelsenbeck, J.P. & Ronquist, F. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755 (2001).

    Article  CAS  Google Scholar 

  49. Posada, D. & Crandall, K.A. MODELTEST: testing the model of DNA substitution. Bioinformatics 14, 817–818 (1998).

    Article  CAS  Google Scholar 

  50. Swofford, D PAUP*: Phylogenetic analysis using parsimony (*and other methods) 4.0b10 edn. (Sinauer, Sunderland, Massachusetts, 2002).

    Google Scholar 

Download references

Acknowledgements

We thank S. Givan, D. Smith and C. Sullivan for assistance and advice with computational resources; L. Johansen for initial propagation of the rdr6-15 mutant; and S. Poethig and H. Vaucheret for discussions about trans-acting siRNAs and the suggestion to analyze miR161 in multiple dcl1 mutated alleles. This work was supported by grants from the US National Science Foundation, the US National Institutes of Health and the United States Department of Agriculture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James C Carrington.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Predicted foldback structures for small RNA generating loci containing inverted repeats with similarity to protein coding genes. (PDF 48 kb)

Supplementary Table 1

MIRNA genes and small RNA-generating loci used for FASTA searches presented in Figure 2. (XLS 39 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allen, E., Xie, Z., Gustafson, A. et al. Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nat Genet 36, 1282–1290 (2004). https://doi.org/10.1038/ng1478

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1478

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing