Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Complex haplotypes, copy number polymorphisms and coding variation in two recently divergent mouse strains

Abstract

Inbred mouse strains provide the foundation for mouse genetics. By selecting for phenotypic features of interest, inbreeding drives genomic evolution and eliminates individual variation, while fixing certain sets of alleles that are responsible for the trait characteristics of the strain. Mouse strains 129Sv (129S5) and C57BL/6J, two of the most widely used inbred lines, diverged from common ancestors within the last century1,2,3,4,5, yet very little is known about the genomic differences between them. By comparative genomic hybridization and sequence analysis of 129S5 short insert libraries, we identified substantial structural variation, a complex fine-scale haplotype pattern with a continuous distribution of diversity blocks, and extensive nucleotide variation, including nonsynonymous coding SNPs and stop codons. Collectively, these genomic changes denote the level and direction of allele fixation that has occurred during inbreeding and provide a basis for defining what makes these mouse strains unique.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CGH analysis of the C57BL/6J and 129S5 mouse genomes.
Figure 2: Refined haplotype structure of the mouse genome.
Figure 3: Analysis of diversity between strains 129S5 and C57BL/6J.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Simpson, E.M. et al. Genetic variation among 129 substrains and its importance for targeted mutagenesis in mice. Nat. Genet. 16, 19–27 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Altman, P.L.K. & Katz, D.D. Part I, Mice and Rats. in Inbred and Genetically Defined Strains of Laboratory Animals 1–418 (Federation of the American Societies for Experimental Biology, Bethesda, Maryland, 1979).

    Google Scholar 

  3. Beck, J.A. et al. Genealogies of mouse inbred strains. Nat. Genet. 24, 23–25 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Silver, L.M. Mouse Genetics (Oxford Univ. Press, New York, 1995).

    Google Scholar 

  5. Bonhomme, F. et al. The polyphyletic origin of laboratory inbred mice and their rate of evolution. J. Linn. Soc 30, 51–88 (1987).

    Article  Google Scholar 

  6. Stevens, L.C. A new inbred subline of mice (129-terSv) with a high incidence of spontaneous congenital testicular teratomas. J. Natl. Cancer Inst. 50, 235–242 (1973).

    Article  CAS  PubMed  Google Scholar 

  7. Auerbach, W. et al. Establishment and chimera analysis of 129/SvEv- and C57BL/6-derived mouse embryonic stem cell lines. Biotechniques 29, 1024–1028, 1030, 1032 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. van der Weyden, L., Adams, D.J. & Bradley, A. Tools for targeted manipulation of the mouse genome. Physiol. Genomics 11, 133–164 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Levine, M. & Tjian, R. Transcription regulation and animal diversity. Nature 424, 147–151 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Force, A. et al. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151, 1531–1545 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Dermitzakis, E.T. & Clark, A.G. Differential selection after duplication in mammalian developmental genes. Mol Biol Evol 18, 557–562 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Eichler, E.E. & Sankoff, D. Structural dynamics of eukaryotic chromosome evolution. Science 301, 793–797 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Chung, Y.J. et al. A whole-genome mouse BAC microarray with 1-Mb resolution for analysis of DNA copy number changes by array comparative genomic hybridization. Genome Res. 14, 188–196 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li, J. et al. Genomic segmental polymorphisms in inbred mouse strains. Nat. Genet. 36, 952–954 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Hughes, T.R. et al. Functional discovery via a compendium of expression profiles. Cell 102, 109–126 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Adams, D.J. et al. MICER—Mutagenic insertion and chromosome engineering resource. Nat. Genet. 36, 867–871 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Birney, E. et al. An overview of Ensembl. Genome Res. 14, 925–928 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ning, Z., Cox, A.J. & Mullikin, J.C. SSAHA: a fast search method for large DNA databases. Genome Res. 11, 1725–1729 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lindblad-Toh, K. et al. Large-scale discovery and genotyping of single-nucleotide polymorphisms in the mouse. Nat. Genet. 24, 381–386 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Wade, C.M. et al. The mosaic structure of variation in the laboratory mouse genome. Nature 420, 574–578 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Wiltshire, T. et al. Genome-wide single-nucleotide polymorphism analysis defines haplotype patterns in mouse. Proc. Natl. Acad. Sci. USA 100, 3380–3385 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yalcin, B. et al. Unexpected complexity in the haplotypes of commonly used inbred strains of laboratory mice. Proc. Natl. Acad. Sci. USA 101, 9734–9739 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Frazer, K.A. et al. Segmental phylogenetic relationships of inbred mouse strains revealed by fine-scale analysis of sequence variation across 4.6 Mb of mouse genome. Genome Res. 14, 1493–1500 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bernardi, G. The compositional evolution of vertebrate genomes. Gene 259, 31–43 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Aebi, M., Hornig, H., Padgett, R.A., Reiser, J. & Weissmann, C. Sequence requirements for splicing of higher eukaryotic nuclear pre-mRNA. Cell 47, 555–565 (1986).

    Article  CAS  PubMed  Google Scholar 

  26. Atweh, G.F., Anagnou, N.P., Shearin, J., Forget, B.G. & Kaufman, R.E. Beta-thalassemia resulting from a single nucleotide substitution in an acceptor splice site. Nucleic Acids Res. 13, 777–790 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zeniou, M., Gattoni, R., Hanauer, A. & Stevenin, J. Delineation of the mechanisms of aberrant splicing caused by two unusual intronic mutations in the RSK2 gene involved in Coffin-Lowry syndrome. Nucleic Acids Res. 32, 1214–1223 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zheng, B., Mills, A.A. & Bradley, A. A system for rapid generation of coat color-tagged knockouts and defined chromosomal rearrangements in mice. Nucleic Acids Res. 27, 2354–2360 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank B. Plumb and his team for sequencing; P. Biggs and members of the Sanger informatics team for their assistance; and W. Wang, L. van der Weyden, J. Jonkers and A. Velds for discussions. D.J.A. was supported by a CJ Martin Fellowship from the Australian National Health and Medical Research Council. This work was supported by the Wellcome Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan Bradley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Comparative genomic hybridisation of C57BL/6J and 129S5 genomes. (XLS 672 kb)

Supplementary Table 2

SNPs from this study that correspond to entries in dbSNP. (XLS 292 kb)

Supplementary Table 3

Synonymous and non- synonymous coding changes and stop codons. (XLS 547 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adams, D., Dermitzakis, E., Cox, T. et al. Complex haplotypes, copy number polymorphisms and coding variation in two recently divergent mouse strains. Nat Genet 37, 532–536 (2005). https://doi.org/10.1038/ng1551

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1551

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing