Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Intragenic tandem repeats generate functional variability

Abstract

Tandemly repeated DNA sequences are highly dynamic components of genomes1. Most repeats are in intergenic regions, but some are in coding sequences or pseudogenes2. In humans, expansion of intragenic triplet repeats is associated with various diseases, including Huntington chorea and fragile X syndrome3,4. The persistence of intragenic repeats in genomes suggests that there is a compensating benefit. Here we show that in the genome of Saccharomyces cerevisiae, most genes containing intragenic repeats encode cell-wall proteins. The repeats trigger frequent recombination events in the gene or between the gene and a pseudogene, causing expansion and contraction in the gene size. This size variation creates quantitative alterations in phenotypes (e.g., adhesion, flocculation or biofilm formation). We propose that variation in intragenic repeat number provides the functional diversity of cell surface antigens that, in fungi and other pathogens, allows rapid adaptation to the environment and elusion of the host immune system.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: S. cerevisiae genes containing conserved intragenic repeats.
Figure 2: Intragenic repetitive domains vary in size.
Figure 3: Intragenic repeats are hot spots for recombination.
Figure 4: Repeats in pseudogenes provide an additional source of variability.
Figure 5: Instability of the FLO1 repeats generates functional variability.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Hartl, D.L. Molecular melodies in high and low C. Nat. Rev. Genet. 1, 145–149 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Verstrepen, K.J., Reynolds, T.B. & Fink, G.R. Origins of variation in the fungal cell surface. Nat. Rev. Microbiol. 2, 533–540 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Li, Y.C., Korol, A.B., Fahima, T. & Nevo, E. Microsatellites within genes: structure, function and evolution. Mol. Biol. Evol. 21, 991–1007 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Jin, P., Alisch, R.S. & Warren, S.T. RNA and microRNAs in fragile X mental retardation. Nat. Cell Biol. 6, 1048–1053 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. Kellis, M., Patterson, N., Endrizzi, M., Birren, B. & Lander, E.S. Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423, 241–254 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Guo, B., Styles, C.A., Feng, Q. & Fink, G. A Saccharomyces gene family involved in invasive growth, cell-cell adhesion, and mating. Proc. Natl. Acad. Sci. USA 97, 12158–12163 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Harrison, P. et al. A small reservoir of disabled ORFs in the yeast genome and its implications for the dynamics of proteome evolution. J. Mol. Biol. 316, 409–419 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Liu, H.P., Styles, C.A. & Fink, G.R. Saccharomyces cerevisiae S288C has a mutation in FLO8, a gene required for filamentous growth. Genetics 144, 967–978 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Lovett, S.T. Encoded errors: mutations and rearrangements mediated by misalignment at repetitive DNA sequences. Mol. Microbiol. 52, 1243–1253 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Viguera, E., Canceill, D. & Ehrlich, S.D. Replication slippage involves DNA polymerase pausing and dissociation. EMBO J. 20, 2587–2595 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Paques, F. & Haber, J.E. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 63, 349–404 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Richard, G.F., Dujon, B. & Haber, J.E. Double-strand break repair can lead to high frequencies of deletions within short CAG CTG trinucleotide repeats. Mol. Gen. Genet. 261, 871–882 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Kokoska, R.J. et al. Destabilization of yeast micro- and minisatellite DNA sequences by mutations affecting a nuclease involved in Okazaki fragment processing (rad27) and DNA polymerase delta (pol3-t). Mol. Cell. Biol. 18, 2779–2788 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Callahan, J.L., Andrews, K.J., Zakian, V.A. & Freudenreich, C.H. Mutations in yeast replication proteins that increase CAG/CTG expansions also increase repeat fragility. Mol. Cell. Biol. 23, 7849–7860 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Debrauwère, H., Loeillet, S., Lin, W. & Nicolas, A. Links between replication and recombination in Saccharomyces cerevisiae: a hypersensitive requirement for homologous recombination in the absence of Rad27 activity. Proc. Natl. Acad. Sci. USA 98, 8263–8269 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Krogh, B.O. & Symington, L.S. Recombination proteins in yeast. Annu. Rev. Genet. 38, 233–271 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Davis, A.P. & Symington, L.S. The yeast recombinational repair protein Rad59 interacts with Rad52 and stimulates single-strand annealing. Genetics 159, 515–525 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hood, D.W. et al. DNA repeats identify novel virulence genes in Haemophilus influenzae. Proc. Natl. Acad. Sci. USA 93, 11121–11125 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Keim, P. et al. Molecular diversity in Bacillus anthracis. J. Appl. Microbiol. 87, 215–217 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Boceta, C., Alonso, C. & Jimenez-Ruiz, A. Leucine rich repeats are the main epitopes in Leishmania infantum PSA during canine and human visceral leishmaniasis. Parasite Immunol. 22, 55–62 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Sakihama, N. et al. Relative frequencies of polymorphisms of variation in Block 2 repeats and 5′ recombinant types of Plasmodium falciparum msp1 alleles. Parasitol. Int. 53, 59–67 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Pays, E., Vanhamme, L. & Berberof, M. Genetic controls for the expression of surface antigens in African trypanosomes. Annu. Rev. Microbiol. 48, 25–52 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Fondon, J.W. III & Garner, H.R. Molecular origins of rapid and continuous morphological evolution. Proc. Natl. Acad. Sci. USA 101, 18058–18063 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schroeder, J.A. et al. MUC1 overexpression results in mammary gland tumorigenesis and prolonged alveolar differentiation. Oncogene 23, 5739–5747 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Patton, S., Gendler, S.J. & Spicer, A.P. The epithelial mucin, MUC1, of milk, mammary gland and other tissues. Biochim. Biophys. Acta 1241, 407–423 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Rice, P., Longden, I. & Bleasby, A. EMBOSS: the European molecular biology open software suite. Trends Genet. 16, 276–277 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Sherman, F., Fink, G.R. & Hicks, J. Methods in Yeast Genetics (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1991).

    Google Scholar 

  28. Sikorski, R.S. & Hieter, P. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122, 19–27 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Reynolds, T.B. & Fink, G.R. Bakers' yeast, a model for fungal biofilm formation. Science 291, 878–881 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Marinangeli, P., Angelozii, D., Ciani, M., Clementi, F. & Mannazzu, M. Minisatellites in Saccharomyces cerevisiae genes encoding cel wall proteins: a new way towards wine strain characterisation. FEMS Yeast Res. 4, 427–435 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Sinskey, A. Amon, T. Petes and all members of the laboratory of G.R.F. for discussions; K. Walker for assistance with the bioinformatics; and T. DiCesare for help with the graphics. K.J.V. is a post-doctoral fellow of the Fund for Scientific Research Flanders (F.W.O. Vlaanderen) and a D. Collen Fellow of the Belgian American Educational Foundation (B.A.E.F.). G.R.F. is an American Cancer Society Professor of Genetics. This research was supported by a grant from the US National Institutes of Health to G.R.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald R Fink.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Size comparison of the repetitive domains of the 29 S. cerevisiae ORFs containing long (≥ 40 nt) intragenic repeats in six different yeast strains. (PDF 1148 kb)

Supplementary Fig. 2

Size comparison of the repetitive domains of the 15 S. cerevisiae ORFs containing short (< 40 nt) intragenic repeats in six different yeast strains. (PDF 1069 kb)

Supplementary Fig. 3

Size comparison of 16 ORFs without intragenic repeats in six yeast strains. (PDF 1127 kb)

Supplementary Fig. 4

Alignment of the FLO1 repetitive region of the wild-type S. cerevisiae S288C strain and that of shorter FLO1 alleles. (PDF 1413 kb)

Supplementary Fig. 5

Model of recombination of intragenic repeats. (PDF 1087 kb)

Supplementary Table 1

ETANDEM analysis of all S. cerevisiae ORFs that contain intragenic repeats. (PDF 191 kb)

Supplementary Table 2

Yeast strains. (PDF 31 kb)

Supplementary Table 3

PCR primer sequences. (PDF 39 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verstrepen, K., Jansen, A., Lewitter, F. et al. Intragenic tandem repeats generate functional variability. Nat Genet 37, 986–990 (2005). https://doi.org/10.1038/ng1618

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1618

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing