Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Approaches to microRNA discovery

Abstract

MicroRNAs (miRNAs) are noncoding RNAs that can regulate gene expression. Several hundred genes encoding miRNAs have been experimentally identified in animals, and many more are predicted by computational methods. How can new miRNAs be discovered and distinguished from other types of small RNA? Here we summarize current methods for identifying and validating miRNAs and discuss criteria used to define an miRNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Methods for cloning miRNA.
Figure 2: Validation of miRNA candidates.

Similar content being viewed by others

References

  1. Lagos-Quintana, M., Rauhut, R., Lendeckel, W. & Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science 294, 853–858 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Lau, N.C., Lim, L.P., Weinstein, E.G. & Bartel, D.P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858–862 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Lee, R.C. & Ambros, V. An extensive class of small RNAs in Caenorhabditis elegans. Science 294, 862–864 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Lim, L.P., Glasner, M.E., Yekta, S., Burge, C.B. & Bartel, D.P. Vertebrate microRNA genes. Science 299, 1540 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    CAS  PubMed  Google Scholar 

  6. Berezikov, E. et al. Phylogenetic shadowing and computational identification of human microRNA genes. Cell 120, 21–24 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Xie, X. et al. Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature 434, 338–345 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bentwich, I. et al. Identification of hundreds of conserved and nonconserved human microRNAs. Nat. Genet. 37, 766–770 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Ambros, V. et al. A uniform system for microRNA annotation. RNA 9, 277–279 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lee, R.C., Feinbaum, R.L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Wightman, B., Ha, I. & Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855–862 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Reinhart, B.J. et al. The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403, 901–906 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Pasquinelli, A.E. et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408, 86–89 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Slack, F.J. et al. The lin-41 RBCC gene acts in the C. elegans heterochronic pathway between the let-7 regulatory RNA and the LIN-29 transcription factor. Mol. Cell 5, 659–669 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Brennecke, J., Hipfner, D.R., Stark, A., Russell, R.B. & Cohen, S.M. bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila. Cell 113, 25–36 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Xu, P., Vernooy, S.Y., Guo, M. & Hay, B.A. The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr. Biol. 13, 790–795 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Teleman, A.A. & Cohen, S.M. Drosophila lacking microRNA miR-278 are defective in energy homeostasis. Genes Dev. 20, 417–422 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Johnston, R.J. & Hobert, O. A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature 426, 845–849 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Abbott, A.L. et al. The let-7 MicroRNA family members mir-48, mir-84, and mir-241 function together to regulate developmental timing in Caenorhabditis elegans. Dev. Cell 9, 403–414 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Elbashir, S.M., Lendeckel, W. & Tuschl, T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 15, 188–200 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Aravin, A. & Tuschl, T. Identification and characterization of small RNAs involved in RNA silencing. FEBS Lett. 579, 5830–5840 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Pfeffer, S., Lagos-Quintana, M. & Tuschl, T. Cloning of small RNA molecules. In Current Protocols in Molecular Biology Vol. 4 (eds. Ausubel F. et al.) 26.4.1–26.4.18 (2003).

  23. Pfeffer, S. et al. Identification of microRNAs of the herpesvirus family. Nat. Methods 2, 269–276 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Fu, H. et al. Identification of human fetal liver miRNAs by a novel method. FEBS Lett. 579, 3849–3854 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Cummins, J.M. et al. The colorectal microRNAome. Proc. Natl. Acad. Sci. USA 103, 3687–3692 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Meyers, B.C., Souret, F.F., Lu, C. & Green, P.J. Sweating the small stuff: microRNA discovery in plants. Curr. Opin. Biotechnol. 17, 139–146 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Lu, C. et al. Elucidation of the small RNA component of the transcriptome. Science 309, 1567–1569 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Luciano, D.J., Mirsky, H., Vendetti, N.J. & Maas, S. RNA editing of a miRNA precursor. RNA 10, 1174–1177 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang, W. et al. Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat. Struct. Mol. Biol. 13, 13–21 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Yang, Z., Ebright, Y.W., Yu, B. & Chen, X. HEN1 recognizes 21–24 nt small RNA duplexes and deposits a methyl group onto the 2′ OH of the 3′ terminal nucleotide. Nucleic Acids Res. 34, 667–675 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kim, V.N. & Nam, J.W. Genomics of microRNA. Trends Genet. 22, 165–173 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. Berezikov, E. & Plasterk, R.H.A. Camels and zebrafish, viruses and cancer: a microRNA update. Hum. Mol. Genet. 14, R183–R190 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Bentwich, I. Prediction and validation of microRNAs and their targets. FEBS Lett. 579, 5904–5910 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Lim, L.P. et al. The microRNAs of Caenorhabditis elegans. Genes Dev. 17, 991–1008 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ohler, U., Yekta, S., Lim, L.P., Bartel, D.P. & Burge, C.B. Patterns of flanking sequence conservation and a characteristic upstream motif for microRNA gene identification. RNA 10, 1309–1322 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Grad, Y. et al. Computational and experimental identification of C. elegans microRNAs. Mol. Cell 11, 1253–1263 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Lai, E.C., Tomancak, P., Williams, R.W. & Rubin, G.M. Computational identification of Drosophila microRNA genes. Genome Biol. 4, R42 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lewis, B.P., Shih, I.H., Jones-Rhoades, M.W., Bartel, D.P. & Burge, C.B. Prediction of mammalian microRNA targets. Cell 115, 787–798 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Doench, J.G. & Sharp, P.A. Specificity of microRNA target selection in translational repression. Genes Dev. 18, 504–511 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kloosterman, W.P., Wienholds, E., Ketting, R.F. & Plasterk, R.H. Substrate requirements for let-7 function in the developing zebrafish embryo. Nucleic Acids Res. 32, 6284–6291 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lewis, B.P., Burge, C.B. & Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Brennecke, J., Stark, A., Russell, R.B. & Cohen, S.M. Principles of microRNA-target recognition. PLoS Biol. 3, e85 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Farh, K.K. et al. The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science 310, 1817–1821 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Stark, A., Brennecke, J., Bushati, N., Russell, R.B. & Cohen, S.M. Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3′ UTR evolution. Cell 123, 1133–1146 (2005).

    Article  CAS  PubMed  Google Scholar 

  46. Adai, A. et al. Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res. 15, 78–91 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chan, C.S., Elemento, O. & Tavazoie, S. Revealing posttranscriptional regulatory elements through network-level conservation. PLoS Comput. Biol. 1, e69 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bonnet, E., Wuyts, J., Rouze, P. & Van de Peer, Y. Evidence that microRNA precursors, unlike other non-coding RNAs, have lower folding free energies than random sequences. Bioinformatics 20, 2911–2917 (2004).

    Article  CAS  PubMed  Google Scholar 

  49. Washietl, S., Hofacker, I.L. & Stadler, P.F. Fast and reliable prediction of noncoding RNAs. Proc. Natl. Acad. Sci. USA 102, 2454–2459 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Washietl, S., Hofacker, I.L., Lukasser, M., Huttenhofer, A. & Stadler, P.F. Mapping of conserved RNA secondary structures predicts thousands of functional noncoding RNAs in the human genome. Nat. Biotechnol. 23, 1383–1390 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Missal, K., Rose, D. & Stadler, P.F. Non-coding RNAs in Ciona intestinalis. Bioinformatics 21 (Suppl.), ii77–ii78 (2005).

    CAS  PubMed  Google Scholar 

  52. Hsu, P.W. et al. miRNAMap: genomic maps of microRNA genes and their target genes in mammalian genomes. Nucleic Acids Res. 34, D135–D139 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Missal, K. et al. Prediction of structured non-coding RNAs in the genomes of the nematodes Caenorhabditis elegans and Caenorhabditis briggsae. J. Exp. Zoolog. B Mol. Dev. Evol. published online 19 January 2006 (10.1002/jez.b.21086).

  54. Legendre, M., Lambert, A. & Gautheret, D. Profile-based detection of microRNA precursors in animal genomes. Bioinformatics 21, 841–845 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Nam, J.W. et al. Human microRNA prediction through a probabilistic co-learning model of sequence and structure. Nucleic Acids Res. 33, 3570–3581 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang, X. et al. MicroRNA identification based on sequence and structure alignment. Bioinformatics 21, 3610–3614 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Sewer, A. et al. Identification of clustered microRNAs using an ab initio prediction method. BMC Bioinformatics 6, 267 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Xue, C. et al. Classification of real and pseudo microRNA precursors using local structure-sequence features and support vector machine. BMC Bioinformatics 6, 310 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Pfeffer, S. et al. Identification of microRNAs of the herpesvirus family. Nat. Methods 2, 269–276 (2005).

    Article  CAS  PubMed  Google Scholar 

  60. Seitz, H. et al. A large imprinted microRNA gene cluster at the mouse Dlk1-Gtl2 domain. Genome Res. 14, 1741–1748 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Altuvia, Y. et al. Clustering and conservation patterns of human microRNAs. Nucleic Acids Res. 33, 2697–2706 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Seitz, H. et al. A large imprinted microRNA gene cluster at the mouse Dlk1-Gtl2 domain. Genome Res. 14, 1741–1748 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Nelson, P.T. et al. Microarray-based, high-throughput gene expression profiling of microRNAs. Nat. Methods 1, 155–161 (2004).

    Article  CAS  PubMed  Google Scholar 

  64. Wienholds, E. et al. MicroRNA expression in zebrafish embryonic development. Science 309, 310–311 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Kloosterman, W.P., Wienholds, E., de Bruijn, E., Kauppinen, S. & Plasterk, R.H.A. In situ detection of miRNAs in animal embryos using LNA-modified oligonucleotide probes. Nat. Methods 3, 27–29 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Nelson, P.T. et al. RAKE and LNA-ISH reveal microRNA expression and localization in archival human brain. RNA 12, 187–191 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Huttenhofer, A. & Vogel, J. Experimental approaches to identify non-coding RNAs. Nucleic Acids Res. 34, 635–646 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Pang, K.C., Frith, M.C. & Mattick, J.S. Rapid evolution of noncoding RNAs: lack of conservation does not mean lack of function. Trends Genet. 22, 1–5 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Chen, P.Y. et al. The developmental miRNA profiles of zebrafish as determined by small RNA cloning. Genes Dev. 19, 1288–1293 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Smalheiser, N.R. & Torvik, V.I. Mammalian microRNAs derived from genomic repeats. Trends Genet. 21, 322–326 (2005).

    Article  CAS  PubMed  Google Scholar 

  71. Devor, E.J. Primate microRNAs miR-220 and miR-492 lie within processed pseudogenes. J. Hered. 97, 186–190 (2006).

    Article  CAS  PubMed  Google Scholar 

  72. Griffiths-Jones, S., Grocock, R.J., van Dongen, S., Bateman, A. & Enright, A.J. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 34, D140–D144 (2006).

    Article  CAS  PubMed  Google Scholar 

  73. Schratt, G.M. et al. A brain-specific microRNA regulates dendritic spine development. Nature 439, 283–289 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Ashraf, S.I., McLoon, A.L., Sclarsic, S.M. & Kunes, S. Synaptic protein synthesis associated with memory is regulated by the RISC pathway in Drosophila. Cell 124, 191–205 (2006).

    Article  CAS  PubMed  Google Scholar 

  75. Wienholds, E., Koudijs, M.J., van Eeden, F.J.M., Cuppen, E. & Plasterk, R.H.A. The microRNA-producing enzyme Dicer1 is essential for zebrafish development. Nat. Genet. 35, 217–218 (2003).

    Article  CAS  PubMed  Google Scholar 

  76. Bernstein, E. et al. Dicer is essential for mouse development. Nat. Genet. 35, 215–217 (2003).

    Article  CAS  PubMed  Google Scholar 

  77. Fukagawa, T. et al. Dicer is essential for formation of the heterochromatin structure in vertebrate cells. Nat. Cell Biol. 6, 784–791 (2004).

    Article  CAS  PubMed  Google Scholar 

  78. Giraldez, A.J. et al. MicroRNAs regulate brain morphogenesis in zebrafish. Science 308, 833–838 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank R. Ketting, M. Tijsterman, W. Kloosterman and other colleagues for discussion and critical comments on the manuscript.

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berezikov, E., Cuppen, E. & Plasterk, R. Approaches to microRNA discovery. Nat Genet 38 (Suppl 6), S2–S7 (2006). https://doi.org/10.1038/ng1794

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1794

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing