Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A genetic signature of interspecies variations in gene expression

Abstract

Phenotypic diversity is generated through changes in gene structure or gene regulation. The availability of full genomic sequences allows for the analysis of gene sequence evolution. In contrast, little is known about the principles driving the evolution of gene expression. Here we describe the differential transcriptional response of four closely related yeast species to a variety of environmental stresses. Genes containing a TATA box in their promoters show an increased interspecies variability in expression, independent of their functional association. Examining additional data sets, we find that this enhanced expression divergence of TATA-containing genes is consistent across all eukaryotes studied to date, including nematodes, fruit flies, plants and mammals. TATA-dependent regulation may enhance the sensitivity of gene expression to genetic perturbations, thus facilitating expression divergence at particular genetic loci.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental design.
Figure 2: The TATA box is associated with high expression divergence.
Figure 3: TATA-containing genes are associated with high expression divergence in various data sets.
Figure 4: Properties of TATA-containing promoters.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Khaitovich, P. et al. Parallel patterns of evolution in the genomes and transcriptomes of humans and chimpanzees. Science 309, 1850–1854 (2005).

    Article  CAS  Google Scholar 

  2. Ranz, J.M., Castillo-Davis, C.I., Meiklejohn, C.D. & Hartl, D.L. Sex-dependent gene expression and evolution of the Drosophila transcriptome. Science 300, 1742–1745 (2003).

    Article  CAS  Google Scholar 

  3. Rifkin, S.A., Houle, D., Kim, J. & White, K.P. A mutation accumulation assay reveals a broad capacity for rapid evolution of gene expression. Nature 438, 220–223 (2005).

    Article  CAS  Google Scholar 

  4. Rifkin, S.A., Kim, J. & White, K.P. Evolution of gene expression in the Drosophila melanogaster subgroup. Nat. Genet. 33, 138–144 (2003).

    Article  CAS  Google Scholar 

  5. Denver, D.R. et al. The transcriptional consequences of mutation and natural selection in Caenorhabditis elegans. Nat. Genet. 37, 544–548 (2005).

    Article  CAS  Google Scholar 

  6. Vuylsteke, M., van Eeuwijk, F., Van Hummelen, P., Kuiper, M. & Zabeau, M. Genetic analysis of variation in gene expression in Arabidopsis thaliana. Genetics 171, 1267–1275 (2005).

    Article  CAS  Google Scholar 

  7. Kliebenstein, D.J. et al. Genomic survey of gene expression diversity in Arabidopsis thaliana. Genetics 172, 1179–1189 (2006).

    Article  Google Scholar 

  8. Gasch, A.P. et al. Conservation and evolution of cis-regulatory systems in ascomycete fungi. PLoS Biol. 2, e398 (2004).

    Article  Google Scholar 

  9. Tanay, A., Regev, A. & Shamir, R. Conservation and evolvability in regulatory networks: the evolution of ribosomal regulation in yeast. Proc. Natl. Acad. Sci. USA 102, 7203–7208 (2005).

    Article  CAS  Google Scholar 

  10. Ihmels, J. et al. Rewiring of the yeast transcriptional network through the evolution of motif usage. Science 309, 938–940 (2005).

    Article  CAS  Google Scholar 

  11. Cliften, P. et al. Finding functional features in Saccharomyces genomes by phylogenetic footprinting. Science 301, 71–76 (2003).

    Article  CAS  Google Scholar 

  12. Kellis, M., Patterson, N., Endrizzi, M., Birren, B. & Lander, E.S. Sequencing and comparison of yeast species to identify genes and regulatory elements. Nature 423, 241–254 (2003).

    Article  CAS  Google Scholar 

  13. Edwards-Ingram, L.C. et al. Comparative genomic hybridization provides new insights into the molecular taxonomy of the Saccharomyces sensu stricto complex. Genome Res. 14, 1043–1051 (2004).

    Article  CAS  Google Scholar 

  14. Ihmels, J. et al. Revealing modular organization in the yeast transcriptional network. Nat. Genet. 31, 370–377 (2002).

    Article  CAS  Google Scholar 

  15. Townsend, J.P., Cavalieri, D. & Hartl, D.L. Population genetic variation in genome-wide gene expression. Mol. Biol. Evol. 20, 955–963 (2003).

    Article  CAS  Google Scholar 

  16. Butler, J.E. & Kadonaga, J.T. The RNA polymerase II core promoter: a key component in the regulation of gene expression. Genes Dev. 16, 2583–2592 (2002).

    Article  CAS  Google Scholar 

  17. Basehoar, A.D., Zanton, S.J. & Pugh, B.F. Identification and distinct regulation of yeast TATA box-containing genes. Cell 116, 699–709 (2004).

    Article  CAS  Google Scholar 

  18. Patikoglou, G.A. et al. TATA element recognition by the TATA box-binding protein has been conserved throughout evolution. Genes Dev. 13, 3217–3230 (1999).

    Article  CAS  Google Scholar 

  19. Gasch, A.P. et al. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11, 4241–4257 (2000).

    Article  CAS  Google Scholar 

  20. Su, A.I. et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc. Natl. Acad. Sci. USA 101, 6062–6067 (2004).

    Article  CAS  Google Scholar 

  21. Brem, R.B., Yvert, G., Clinton, R. & Kruglyak, L. Genetic dissection of transcriptional regulation in budding yeast. Science 296, 752–755 (2002).

    Article  CAS  Google Scholar 

  22. Fay, J.C., McCullough, H.L., Sniegowski, P.D. & Eisen, M.B. Population genetic variation in gene expression is associated with phenotypic variation in Saccharomyces cerevisiae. Genome Biol. 5, R26 (2004).

    Article  Google Scholar 

  23. Landry, C.R., Oh, J., Hartl, D.L. & Cavalieri, D. Genome-wide scan reveals that genetic variation for transcriptional plasticity in yeast is biased towards multi-copy and dispensable genes. Gene 366, 343–351 (2006).

    Article  CAS  Google Scholar 

  24. Chin, C.S., Chuang, J.H. & Li, H. Genome-wide regulatory complexity in yeast promoters: Separation of functionally conserved and neutral sequence. Genome Res. 15, 205–213 (2005).

    Article  CAS  Google Scholar 

  25. Huisinga, K.L. & Pugh, B.F. A genome-wide housekeeping role for TFIID and a highly regulated stress-related role for SAGA in Saccharomyces cerevisiae. Mol. Cell 13, 573–585 (2004).

    Article  CAS  Google Scholar 

  26. Zhang, H., Roberts, D.N. & Cairns, B.R. Genome-wide dynamics of Htz1, a histone H2A variant that poises repressed/basal promoters for activation through histone loss. Cell 123, 219–231 (2005).

    Article  CAS  Google Scholar 

  27. Raser, J.M. & O'Shea, E.K. Control of stochasticity in eukaryotic gene expression. Science 304, 1811–1814 (2004).

    Article  CAS  Google Scholar 

  28. Blake, W.J., Kaern, M., Cantor, C.R. & Collins, J.J . Noise in eukaryotic gene expression. Nature 422, 633–637 (2003).

    Article  CAS  Google Scholar 

  29. Kirschner, M. & Gerhart, J. Evolvability. Proc. Natl. Acad. Sci. USA 95, 8420–8427 (1998).

    Article  CAS  Google Scholar 

  30. Harbison, C.T. et al. Transcriptional regulatory code of a eukaryotic genome. Nature 431, 99–104 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Koren, A. Murray, J. Plotkin and members of our laboratory for helpful discussions. This work was supported by a grant from the Kahn Fund for Systems Biology at the Weizmann Institute of Science and by the Israeli Ministry of Science (Tashtiot). N.B. acknowledges the Bauer Center for Genomic Research at Harvard University, where part of this research was performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naama Barkai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Cross-species hybridization control. (PDF 243 kb)

Supplementary Fig. 2

Expression divergence controls. (PDF 102 kb)

Supplementary Fig. 3

TATA-ED association within functional groups, for different classes of hybridization intensities. (PDF 88 kb)

Supplementary Fig. 4

TATA-ED association within functional groups, in different data sets. (PDF 84 kb)

Supplementary Fig. 5

SAGA/TFIID dependency and the histone variant Htz1 can partially account for the increased expression divergence of TATA-containing genes. (PDF 74 kb)

Supplementary Fig. 6

Enrichment of TATA boxes in functional categories in yeast and humans. (PDF 86 kb)

Supplementary Table 1

TATA box versus expression divergence in various data sets. (PDF 72 kb)

Supplementary Methods (PDF 296 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tirosh, I., Weinberger, A., Carmi, M. et al. A genetic signature of interspecies variations in gene expression. Nat Genet 38, 830–834 (2006). https://doi.org/10.1038/ng1819

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1819

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing