Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

Epigenetic characterization of the early embryo with a chromatin immunoprecipitation protocol applicable to small cell populations

Abstract

Chromatin immunoprecipitation (ChIP) defines the genomic distribution of proteins and their modifications but is limited by the cell numbers required (ideally >107). Here we describe a protocol that uses carrier chromatin and PCR, 'carrier' ChIP (CChIP), to permit analysis of as few as 100 cells. We assayed histone modifications at key regulator genes (such as Nanog, Pou5f1 (also known as Oct4) and Cdx2) by CChIP in mouse embryonic stem (ES) cells and in inner cell mass (ICM) and trophectoderm of cultured blastocysts. Activating and silencing modifications (H4 acetylation and H3K9 methylation) mark active and silent promoters as predicted, and we find close correlation between values derived from CChIP (1,000 ES cells) and conventional ChIP (5 × 107 ES cells). Studies on genes silenced in both ICM and ES cells (Cdx2, Cfc1, Hhex and Nkx2-2, also known as Nkx) show that the intensity of silencing marks is relatively diminished in ES cells, indicating a possible relaxation of some components of silencing on adaptation to culture.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Quantitation by conventional NChIP of levels of histone modification (bound/unbound ratios) at selected regions of Nanog and the promoter regions of Cdx2 and Gapdh in undifferentiated ES cells (light gray columns), or embryoid bodies formed after 7 d differentiation in culture (black columns).
Figure 2: Outline and initial validation of the CChIP protocol.
Figure 3: Quantitation by CChIP of levels of histone modification (bound/unbound ratio) at selected regions of Nanog and the promoter regions of other genes.
Figure 4: Analysis of histone modifications on selected genes in ICM and trophectoderm by CChIP.

Similar content being viewed by others

References

  1. Smith, A.G. Embryo-derived stem cells: of mice and men. Annu. Rev. Cell Dev. Biol. 17, 435–462 (2001).

    Article  CAS  Google Scholar 

  2. Ralston, A. & Rossant, J. Genetic regulation of stem cell origins in the mouse embryo. Clin. Genet. 68, 106–112 (2005).

    Article  CAS  Google Scholar 

  3. Chambers, I. et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113, 643–655 (2003).

    Article  CAS  Google Scholar 

  4. Mitsui, K. et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113, 631–642 (2003).

    Article  CAS  Google Scholar 

  5. Boyer, L.A. et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122, 947–956 (2005).

    Article  CAS  Google Scholar 

  6. Arney, K.L. & Fisher, A.G. Epigenetic aspects of differentiation. J. Cell Sci. 117, 4355–4363 (2004).

    Article  CAS  Google Scholar 

  7. Santos, F. & Dean, W. Epigenetic reprogramming during early development in mammals. Reproduction 127, 643–651 (2004).

    Article  CAS  Google Scholar 

  8. Szutorisz, H. & Dillon, N. The epigenetic basis for embryonic stem cell pluripotency. Bioessays 27, 1286–1293 (2005).

    Article  CAS  Google Scholar 

  9. Gilbert, N., Gilchrist, S. & Bickmore, W.A. Chromatin organization in the mammalian nucleus. Int. Rev. Cytol. 242, 283–336 (2005).

    Article  CAS  Google Scholar 

  10. Merkenschlager, M. et al. Centromeric repositioning of coreceptor loci predicts their stable silencing and the CD4/CD8 lineage choice. J. Exp. Med. 200, 1437–1444 (2004).

    Article  CAS  Google Scholar 

  11. Perry, P. et al. A dynamic switch in the replication timing of key regulator genes in embryonic stem cells upon neural induction. Cell Cycle 3, 1645–1650 (2004).

    Article  CAS  Google Scholar 

  12. Sproul, D., Gilbert, N. & Bickmore, W.A. The role of chromatin structure in regulating the expression of clustered genes. Nat. Rev. Genet. 6, 775–781 (2005).

    Article  CAS  Google Scholar 

  13. Wiblin, A.E., Cui, W., Clark, A.J. & Bickmore, W.A. Distinctive nuclear organisation of centromeres and regions involved in pluripotency in human embryonic stem cells. J. Cell Sci. 118, 3861–3868 (2005).

    Article  CAS  Google Scholar 

  14. Margueron, R., Trojer, P. & Reinberg, D. The key to development: interpreting the histone code? Curr. Opin. Genet. Dev. 15, 163–176 (2005).

    Article  CAS  Google Scholar 

  15. Nightingale, K.P., O'Neill, L.P. & Turner, B.M. Histone modifications: signalling receptors and potential elements of a heritable epigenetic code. Curr. Opin. Genet. Dev. 16, 125–136 (2006).

    Article  CAS  Google Scholar 

  16. Baxter, J. et al. Histone hypomethylation is an indicator of epigenetic plasticity in quiescent lymphocytes. EMBO J. 23, 4462–4472 (2004).

    Article  CAS  Google Scholar 

  17. Martens, J.H. et al. The profile of repeat-associated histone lysine methylation states in the mouse epigenome. EMBO J. 24, 800–812 (2005).

    Article  CAS  Google Scholar 

  18. Rice, J.C. et al. Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol. Cell 12, 1591–1598 (2003).

    Article  CAS  Google Scholar 

  19. Schneider, R. et al. Histone H3 lysine 4 methylation patterns in higher eukaryotic genes. Nat. Cell Biol. 6, 73–77 (2004).

    Article  CAS  Google Scholar 

  20. Fischle, W. et al. Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 438, 1116–1122 (2005).

    Article  CAS  Google Scholar 

  21. Sims, R.J. III et al. Human but not yeast CHD1 binds directly and selectively to histone H3 methylated at lysine 4 via its tandem chromodomains. J. Biol. Chem. 280, 41789–41792 (2005).

    Article  CAS  Google Scholar 

  22. Gregory, R.I. et al. Inhibition of histone deacetylases alters allelic chromatin conformation at the imprinted U2af1-rs1 locus in mouse embryonic stem cells. J. Biol. Chem. 277, 11728–11734 (2002).

    Article  CAS  Google Scholar 

  23. Hattori, N. et al. Epigenetic control of mouse Oct-4 gene expression in embryonic stem cells and trophoblast stem cells. J. Biol. Chem. 279, 17063–17069 (2004).

    Article  CAS  Google Scholar 

  24. O'Neill, L.P. et al. X-linked genes in female embryonic stem cells carry an epigenetic mark prior to the onset of X inactivation. Hum. Mol. Genet. 12, 1783–1790 (2003).

    Article  CAS  Google Scholar 

  25. Szutorisz, H. et al. Formation of an active tissue-specific chromatin domain initiated by epigenetic marking at the embryonic stem cell stage. Mol. Cell. Biol. 25, 1804–1820 (2005).

    Article  CAS  Google Scholar 

  26. Handyside, A.H. & Hunter, S. A rapid procedure for visualising the inner cell mass and trophectoderm nuclei of mouse blastocysts in situ using polynucleotide-specific fluorochromes. J. Exp. Zool. 231, 429–434 (1984).

    Article  CAS  Google Scholar 

  27. Harvey, M.B. & Kaye, P.L. Insulin increases the cell number of the inner cell mass and stimulates morphological development of mouse blastocysts in vitro. Development 110, 963–967 (1990).

    CAS  PubMed  Google Scholar 

  28. Adjaye, J. et al. Primary differentiation in the human blastocyst: comparative molecular portraits of inner cell mass and trophectoderm cells. Stem Cells 23, 1514–1525 (2005).

    Article  CAS  Google Scholar 

  29. Rugg-Gunn, P.J., Ferguson-Smith, A.C. & Pedersen, R.A. Epigenetic status of human embryonic stem cells. Nat. Genet. 37, 585–587 (2005).

    Article  CAS  Google Scholar 

  30. Pokholok, D.K. et al. Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 122, 517–527 (2005).

    Article  CAS  Google Scholar 

  31. Lachner, M., O'Sullivan, R.J. & Jenuwein, T. An epigenetic road map for histone lysine methylation. J. Cell Sci. 116, 2117–2124 (2003).

    Article  CAS  Google Scholar 

  32. Schubeler, D. et al. The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Dev. 18, 1263–1271 (2004).

    Article  Google Scholar 

  33. Strumpf, D. et al. Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development 132, 2093–2102 (2005).

    Article  CAS  Google Scholar 

  34. Vakoc, C.R., Mandat, S.A., Olenchock, B.A. & Blobel, G.A. Histone H3 lysine 9 methylation and HP1gamma are associated with transcription elongation through mammalian chromatin. Mol. Cell 19, 381–391 (2005).

    Article  CAS  Google Scholar 

  35. Solter, D. & Knowles, B.B. Immunosurgery of mouse blastocyst. Proc. Natl. Acad. Sci. USA 72, 5099–5102 (1975).

    Article  CAS  Google Scholar 

  36. Jones, P.A. & Martienssen, R. A blueprint for a Human Epigenome Project: the AACR Human Epigenome Workshop. Cancer Res. 65, 11241–11246 (2005).

    Article  CAS  Google Scholar 

  37. Hebbes, T.R., Thorne, A.W. & Crane-Robinson, C. A direct link between core histone acetylation and transcriptionally active chromatin. EMBO J. 7, 1395–1402 (1988).

    Article  CAS  Google Scholar 

  38. O'Neill, L.P. & Turner, B.M. Histone H4 acetylation distinguishes coding regions of the human genome from heterochromatin in a differentiation-dependent but transcription-independent manner. EMBO J. 14, 3946–3957 (1995).

    Article  CAS  Google Scholar 

  39. Orlando, V. Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-chromatin immunoprecipitation. Trends Biochem. Sci. 25, 99–104 (2000).

    Article  CAS  Google Scholar 

  40. Geisberg, J.V. & Struhl, K. Quantitative sequential chromatin immunoprecipitation, a method for analyzing co-occupancy of proteins at genomic regions in vivo. Nucleic Acids Res. 32, e151 (2004).

    Article  Google Scholar 

  41. Kuo, M.H. & Allis, C.D. In vivo cross-linking and immunoprecipitation for studying dynamic Protein:DNA associations in a chromatin environment. Methods 19, 425–433 (1999).

    Article  CAS  Google Scholar 

  42. Robyr, D. & Grunstein, M. Genomewide histone acetylation microarrays. Methods 31, 83–89 (2003).

    Article  CAS  Google Scholar 

  43. Suka, N., Suka, Y., Carmen, A.A., Wu, J. & Grunstein, M. Highly specific antibodies determine histone acetylation site usage in yeast heterochromatin and euchromatin. Mol. Cell 8, 473–479 (2001).

    Article  CAS  Google Scholar 

  44. Gregory, R.I. & Feil, R. Analysis of chromatin in limited numbers of cells: a PCR-SSCP based assay of allele-specific nuclease sensitivity. Nucleic Acids Res. 27, e32 (1999).

    Article  CAS  Google Scholar 

  45. Santos, F. et al. Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos. Curr. Biol. 13, 1116–1121 (2003).

    Article  CAS  Google Scholar 

  46. Schneider, I. Cell lines derived from late embryonic stages of Drosophila melanogaster. J. Embryol. Exp. Morphol. 27, 353–365 (1972).

    CAS  PubMed  Google Scholar 

  47. Norris, D.P. et al. Evidence that random and imprinted Xist expression is controlled by preemptive methylation. Cell 77, 41–51 (1994).

    Article  CAS  Google Scholar 

  48. O'Neill, L.P. et al. A developmental switch in H4 acetylation upstream of Xist plays a role in X chromosome inactivation. EMBO J. 18, 2897–2907 (1999).

    Article  CAS  Google Scholar 

  49. Turner, B.M. & Fellows, G. Specific antibodies reveal ordered and cell-cycle-related use of histone-H4 acetylation sites in mammalian cells. Eur. J. Biochem. 179, 131–139 (1989).

    Article  CAS  Google Scholar 

  50. White, D.A., Belyaev, N.D. & Turner, B.M. Preparation of site-specific antibodies to acetylated histones. Methods 19, 417–424 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to S. Parnell for help with preparation of mRNA from small numbers of cells, to V. Gupta for advice on statistical analyses and to J. Frampton and W. Reik for comments on the manuscript. L.P.O. is a Royal Society Research Fellow and M.D.V. is supported by a PhD studentship from the University of Birmingham Medical School. This work was funded by Cancer Research UK and the Biotechnology and Biological Sciences Research Council (BBSRC).

Author information

Authors and Affiliations

Authors

Contributions

L.P.O.: validation and development of CChIP technique, study design, planning and carrying out experiments, data analysis, writing paper. M.D.V.: growth and dissection of embryos, carrying out experiments, data analysis, assistance in writing paper. B.M.T.: concept, study design, planning experiments, data analysis, writing paper.

Corresponding author

Correspondence to Bryan M Turner.

Ethics declarations

Competing interests

The CChIP procedure described in this paper is the subject of British patent application number 0601538.2 (B.M.T., L.P.O.).

Supplementary information

Supplementary Fig. 1

Levels of H4K16ac and H3K9me2 on silent genes in ES cells and ICM assayed by CChIP. (PDF 12 kb)

Supplementary Table 1

Levels of H4K16 acetylation and H3K9 dimethylation at selected genes and gene regions in ICM and ES cells. (PDF 11 kb)

Supplementary Table 2

Primers used for CChIP and expression analysis. (PDF 11 kb)

Supplementary Note (PDF 16 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Neill, L., VerMilyea, M. & Turner, B. Epigenetic characterization of the early embryo with a chromatin immunoprecipitation protocol applicable to small cell populations. Nat Genet 38, 835–841 (2006). https://doi.org/10.1038/ng1820

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1820

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing