Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identifying regulatory networks by combinatorial analysis of promoter elements

Abstract

Several computational methods based on microarray data are currently used to study genome-wide transcriptional regulation. Few studies, however, address the combinatorial nature of transcription, a well-established phenomenon in eukaryotes. Here we describe a new approach using microarray data to uncover novel functional motif combinations in the promoters of Saccharomyces cerevisiae. In addition to identifying novel motif combinations that affect expression patterns during the cell cycle, sporulation and various stress responses, we observed regulatory cross-talk among several of these processes. We have also generated motif-association maps that provide a global view of transcription networks. The maps are highly connected, suggesting that a small number of transcription factors are responsible for a complex set of expression patterns in diverse conditions. This approach may be useful for modeling transcriptional regulatory networks in more complex eukaryotes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: a, Strategy used to discover and analyze synergistic motif combinations.
Figure 2: The effect of relative motif orientation on motif synergy.
Figure 3: Global motif synergy map.
Figure 4: Combinograms of cell-cycle- and sporulation-related motifs.
Figure 5: Combinograms of the heat-shock16 and the nucleotide excision repair18 experiments.

Similar content being viewed by others

References

  1. Kel, O.V., Romaschenko, A.G., Kel, A.E., Wingender, E. & Kolchanov, N.A. A compilation of composite regulatory elements affecting gene transcription in vertebrates. Nucleic Acids Res. 23, 4097–4103 (1995).

    Article  CAS  Google Scholar 

  2. Quandt, K., Grote, K. & Werner, T. GenomeInspector: basic software tools for analysis of spatial correlations between genomic structures within megabase sequences. Genomics 33, 301–304 (1996).

    Article  CAS  Google Scholar 

  3. Yuh, C.H., Bolouri, H. & Davidson, E.H. Genomic cis -regulatory logic: experimental and computational analysis of a sea urchin gene. Science 279, 1896–1902 (1998).

    Article  CAS  Google Scholar 

  4. Wang, J., Ellwood, K., Lehman, A., Carey, M.F. & She, Z.S. A mathematical model for synergistic eukaryotic gene activation. J. Mol. Biol. 286, 315–325 (1999).

    Article  CAS  Google Scholar 

  5. Halfon, M.S. et al. Ras pathway specificity is determined by the integration of multiple signal-activated and tissue-restricted transcription factors. Cell 103, 63–74 (2000).

    Article  CAS  Google Scholar 

  6. Fickett, J.W. & Wasserman, W.W. Discovery and modeling of transcriptional regulatory regions. Curr. Opin. Biotechnol. 11, 19–24 (2000).

    Article  CAS  Google Scholar 

  7. Brazma, A., Jonassen, I., Vilo, J. & Ukkonen, E. Predicting gene regulatory elements in silico on a genomic scale. Genome Res. 8, 1202–1215 (1998).

    Article  CAS  Google Scholar 

  8. van Helden, J., Andre, B. & Collado-Vides, J. Extracting regulatory sites from the upstream region of yeast genes by computational analysis of oligonucleotide frequencies. J. Mol. Biol. 281, 827–842 (1998).

    Article  CAS  Google Scholar 

  9. Spellman, P.T. et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell. 9, 3273–3297 (1998).

    Article  CAS  Google Scholar 

  10. Tavazoie, S., Hughes, J.D., Campbell, M.J., Cho, R.J. & Church, G.M. Systematic determination of genetic network architecture. Nature Genet. 22, 281–285 (1999).

    Article  CAS  Google Scholar 

  11. Wolfsberg, T.G. et al. Candidate regulatory sequence elements for cell cycle–dependent transcription in Saccharomyces cerevisiae. Genome Res. 9, 775–792 (1999).

    CAS  PubMed Central  Google Scholar 

  12. Hughes, J.D., Estep, P.W., Tavazoie, S. & Church, G.M. Computational identification of cis -regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae. J. Mol. Biol. 296, 1205–1214 (2000).

    Article  CAS  Google Scholar 

  13. Cho, R.J. et al. A genome-wide transcriptional analysis of the mitotic cell cycle. Mol. Cell 2, 65–73 (1998).

    Article  CAS  Google Scholar 

  14. Chu, S. et al. The transcriptional program of sporulation in budding yeast. Science 282, 699–705 (1998).

    Article  CAS  Google Scholar 

  15. DeRisi, J.L., Iyer, V.R. & Brown, P.O. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680–686 (1997).

    Article  CAS  Google Scholar 

  16. Eisen, M.B., Spellman, P.T., Brown, P.O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863–14868 (1998).

    Article  CAS  Google Scholar 

  17. Roberts, C.J. et al. Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. Science 287, 873–880 (2000).

    Article  CAS  Google Scholar 

  18. Jelinsky, S.A., Estep, P., Church, G.M. & Samson, L.D. Regulatory networks revealed by transcriptional profiling of damaged Saccharomyces cerevisiae cells: Rpn4 links base excision repair with proteasomes. Mol. Cell. Biol. 20, 8157–8167 (2000).

    Article  CAS  Google Scholar 

  19. Zhu, G. et al. Two yeast forkhead genes regulate the cell cycle and pseudohyphal growth. Nature 406, 90–94 (2000).

    Article  CAS  Google Scholar 

  20. Koranda, M., Schleiffer, A., Endler, L. & Ammerer, G. Forkhead-like transcription factors recruit Ndd1 to the chromatin of G2/M-specific promoters. Nature 406, 94–98 (2000).

    Article  CAS  Google Scholar 

  21. Oehlen, L.J., McKinney, J.D. & Cross, F.R. Ste12 and Mcm1 regulate cell cycle–dependent transcription of FAR1. Mol. Cell. Biol. 16, 2830–2837 (1996).

    Article  CAS  Google Scholar 

  22. Arndt, K.T., Styles, C. & Fink, G.R. Multiple global regulators control HIS4 transcription in yeast. Science 237, 874–880 (1987).

    Article  CAS  Google Scholar 

  23. Umemura, K. et al. Derepression of gene expression mediated by the 5′ upstream region of the isocitrate lyase gene of Candida tropicalis is controlled by two distinct regulatory pathways in Saccharomyces cerevisiae. Eur. J. Biochem. 243, 748–752 (1997).

    Article  CAS  Google Scholar 

  24. Reed, S.H., Akiyama, M., Stillman, B. & Friedberg, E.C. Yeast autonomously replicating sequence binding factor is involved in nucleotide excision repair. Genes Dev. 13, 3052–3058 (1999).

    Article  CAS  Google Scholar 

  25. Morse, R.H. RAP, RAP, open up! New wrinkles for RAP1 in yeast. Trends Genet. 16, 51–53 (2000).

    Article  CAS  Google Scholar 

  26. Roth, F.P., Hughes, J.D., Estep, P.W. & Church, G.M. Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation. Nature Biotechnol. 16, 939–945 (1998).

    Article  CAS  Google Scholar 

  27. Dequard-Chablat, M., Riva, M., Carles, C. & Sentenac, A. RPC19, the gene for a subunit common to yeast RNA polymerases A (I) and C (III). J. Biol. Chem. 266, 15300–15307 (1991).

    CAS  Google Scholar 

  28. Gasch, A.P. et al. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11, 4241–4257 (2000).

    Article  CAS  Google Scholar 

  29. Causton, H.C. et al. Remodeling of yeast genome expression in response to environmental changes. Mol. Biol. Cell 12, 323–337 (2001).

    Article  CAS  Google Scholar 

  30. Werner, T. Models for prediction and recognition of eukaryotic promoters. Mamm. Genome 10, 168–175 (1999).

    Article  CAS  Google Scholar 

  31. Koch, C., Moll, T., Neuberg, M., Ahorn, H. & Nasmyth, K. A role for the transcription factors Mbp1 and Swi4 in progression from G1 to S phase. Science 261, 1551–1557 (1993).

    Article  CAS  Google Scholar 

  32. Iyer, V.R. et al. Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. Nature 409, 533–538 (2001).

    Article  CAS  Google Scholar 

  33. Bussemaker, H.J., Li, H. & Siggia, E.D. Regulatory element detection using correlation with expression. Nature Genet. 27, 167–171 (2001).

    Article  CAS  Google Scholar 

  34. Leem, S.H., Chung, C.N., Sunwoo, Y. & Araki, H. Meiotic role of SWI6 in Saccharomyces cerevisiae. Nucleic Acids Res. 26, 3154–3158 (1998).

    Article  CAS  Google Scholar 

  35. Wagner, A. Genes regulated cooperatively by one or more transcription factors and their identification in whole eukaryotic genomes. Bioinformatics 15, 776–784 (1999).

    Article  CAS  Google Scholar 

  36. Mewes, H.W. et al. MIPS: a database for genomes and protein sequences. Nucleic Acids Res. 28, 37–40 (2000).

    Article  CAS  Google Scholar 

  37. Zhu, J. & Zhang, M.Q. SCPD: a promoter database of the yeast Saccharomyces cerevisiae. Bioinformatics 15, 607–611 (1999).

    Article  CAS  Google Scholar 

  38. Bulyk, M.L., Huang, X., Choo, Y. & Church, G.M. Exploring the DNA-binding specificities of zinc fingers with DNA microarrays. Proc. Natl Acad. Sci. USA 2001, 12 (2001).

    Google Scholar 

  39. Aach, J., Rindone, W. & Church, G.M. Systematic management and analysis of yeast gene expression data. Genome Res. 10, 431–445 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Hughes for providing many of the motifs used in these analyses and U. Keich for assistance with the statistical analyses of motif synergies. We are grateful to J. Aach, B. Cohen, A. Derti, P. D'Haeseleer, A. Dudley, M. Kupiec, R. Mitra, F. Roth, D. Segré and M. Wright for advice and suggestions. Y.P. was a scholar of the Fulbright Foundation. We are grateful to the US Department of Energy and National Science Foundation and to the Lipper Foundation for grant support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George M. Church.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pilpel, Y., Sudarsanam, P. & Church, G. Identifying regulatory networks by combinatorial analysis of promoter elements. Nat Genet 29, 153–159 (2001). https://doi.org/10.1038/ng724

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng724

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing