Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Efficient generation and mapping of recessive developmental mutations using ENU mutagenesis

Abstract

Treatment with N-ethyl-N-nitrosourea (ENU) efficiently generates single-nucleotide mutations in mice1,2,3. Along with the renewed interest in this approach, much attention has been given recently to large screens with broad aims4,5; however, more finely focused studies have proven very productive as well6,7,8. Here we show how mutagenesis together with genetic mapping can facilitate the rapid characterization of recessive loci required for normal embryonic development. We screened third-generation progeny of mutagenized mice at embryonic day (E) 18.5 for abnormalities of organogenesis. We ascertained 15 monogenic mutations in the 54 families that were comprehensively analyzed. We carried out the experiment as an outcross, which facilitated the genetic mapping of the mutations by haplotype analysis. We mapped seven of the mutations and identified the affected locus in two lines. Using a hierarchical approach, it is possible to maximize the efficiency of this analysis so that it can be carried out easily with modest infrastructure and resources.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Line 156: Ryr1m1Bei.
Figure 2: Line 104: shorty.
Figure 3: Line 172: Pkd1m1Bei.
Figure 4: Line 158: alien.

Similar content being viewed by others

References

  1. Russell, W.L. et al. Specific locus test shows ethylnitrosurea to be the most potent mutagen in the mouse. Proc. Natl Acad. Sci. USA 76, 5818–5819 (1979).

    Article  CAS  Google Scholar 

  2. Russell, W.L., Hunsicker, P.R., Carpenter, D.A., Cornett, C.V. & Guinn, G.M. Effect of dose-fractionation on the ethylnitrosurea induction of specific-locus mutations in mouse spermatogonia. Proc. Natl Acad. Sci. USA 79, 3592–3593 (1982).

    Article  CAS  Google Scholar 

  3. Justice, M.J., Noveroske, J.K., Weber, J.S., Zheng, B. & Bradley, A. Mouse ENU mutagenesis. Hum. Mol. Genet. 8, 1955–1963 (1999).

    Article  CAS  Google Scholar 

  4. Nolan, P.M. et al. A systematic, genome-wide, phenotype-driven mutagenesis programme for gene function studies in the mouse. Nature Genet. 25, 440–444 (2000).

    Article  CAS  Google Scholar 

  5. Hrabe de Angelis, M.H. et al. Genome-wide, large-scale production of mutant mice by ENU mutagenesis. Nature Genet. 25, 444–447 (2000).

    Article  CAS  Google Scholar 

  6. Kasarskis, A., Manova, K. & Anderson, K.V. A phenotype-based screen for embryonic lethal mutations in the mouse. Proc. Natl Acad. Sci. USA 95, 7485–7490 (1998).

    Article  CAS  Google Scholar 

  7. Hentges, K., Thompson, K. & Peterson, A. The flat-top gene is required for the expansion and regionalization of the telencephalic primordium. Development 126, 1601–1609 (1999).

    CAS  PubMed  Google Scholar 

  8. Favor, J. & Neuhauser-Klaus, A. Saturation mutagenesis for dominant eye morphological defects in the mouse Mus musculus. Mamm. Genome 11, 520–525 (2000).

    Article  CAS  Google Scholar 

  9. Neuhaus, I. & Beier, D. Efficient localization of mutations by interval haplotype analysis. Mamm. Genome 9, 150–154 (1998).

    Article  CAS  Google Scholar 

  10. Takeshima, H. et al. Excitation-contraction uncoupling and muscular degeneration in mice lacking functional skeletal muscle ryanodine-receptor gene. Nature 369, 556–559 (1994).

    Article  CAS  Google Scholar 

  11. Kusumi, K. et al. The mouse pudgy mutation disrupts Delta homologue Dll3 and initiation of early somite boundaries. Nature Genet. 19, 274–278 (1998).

    Article  CAS  Google Scholar 

  12. Hrabe de Angelis, M., McIntyre, J. & Gossler, A. Maintenance of somite borders in mice requires the Delta homologue DII1. Nature 386, 717–721 (1997).

    Article  CAS  Google Scholar 

  13. Beckers, J., Schlautmann, N. & Gossler, A. The mouse rib-vertebrae mutation disrupts anterior-posterior somite patterning and genetically interacts with a Delta1 null allele. Mech. Dev. 95, 35–46 (2000).

    Article  CAS  Google Scholar 

  14. Lu, W. et al. Perinatal lethality with kidney and pancreas defects in mice with a targetted Pkd1 mutation. Nature Genet. 17, 179–181 (1997).

    Article  CAS  Google Scholar 

  15. Wu, G. et al. Somatic inactivation of Pkd2 results in polycystic kidney disease. Cell 93, 177–188 (1998).

    Article  CAS  Google Scholar 

  16. Turco, A.E., Rossetti, S., Bresin, E., Englisch, S., Corra, S. & Pignatti, P.F. Three novel mutations of the PKD1 gene in Italian families with autosomal dominant polycystic kidney disease. Hum. Mutat. 10, 164–167 (1997).

    Article  CAS  Google Scholar 

  17. Daniells, C., Maheshwar, M., Lazarou, L., Davies, F., Coles, G. & Ravine, D. Novel and recurrent mutations in the PKD1 (polycystic kidney disease) gene. Hum. Genet. 102, 216–220 (1998).

    Article  CAS  Google Scholar 

  18. Sporle, R., Gunther, T., Struwe, M. & Schughart, K. Severe defects in the formation of epaxial musculature in open brain (opb) mutant mouse embryos. Development 122, 79–86 (1996).

    CAS  PubMed  Google Scholar 

  19. Sporle, R. & Schughart, K. Paradox segmentation along inter- and intrasomitic borderlines is followed by dysmorphology of the axial skeleton in the open brain (opb) mouse mutant. Dev. Genet. 22, 359–373 (1998).

    Article  CAS  Google Scholar 

  20. Eggenschwiler, J.T., Espinoza, E. & Anderson, K.V. Rab23 is an essential negative regulator of the mouse Sonic hedgehog signalling pathway. Nature 412, 194–198 (2001).

    Article  CAS  Google Scholar 

  21. Bode, V.C., McDonald, J.D., Guenet, J.L. & Simon, D. hph-1: a mouse mutant with hereditary hyperphenylalaninemia induced by ethylnitrosourea mutagenesis. Genetics 118, 299–305 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Luna, l.J. Manual of Histologic Staining Methods of the Armed Forces Institute of Pathology (McGraw-Hill, New York, 1960).

    Google Scholar 

  23. McLeod, M.J. Differential staining of cartilage and bone in whole mouse fetuses by Alcian Blue and Alizarin Red S. Teratology 22, 299–301 (1980).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Simms, J. Kim, S. Kuida and A. Salinger for their contributions to this project. This work was supported by grants from the National Institutes of Health (M.J.J. and D.R.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Beier.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herron, B., Lu, W., Rao, C. et al. Efficient generation and mapping of recessive developmental mutations using ENU mutagenesis. Nat Genet 30, 185–189 (2002). https://doi.org/10.1038/ng812

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng812

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing