Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Human genome sequence variation and the influence of gene history, mutation and recombination

Abstract

Variation in the human genome sequence is key to understanding susceptibility to disease in modern populations and the history of ancestral populations. Unlocking this information requires knowledge of the patterns and underlying causes of human sequence diversity. By applying a new population-genetic framework to two genome-wide polymorphism surveys, we find that the human genome contains sizeable regions (stretching over tens of thousands of base pairs) that have intrinsically high and low rates of sequence variation. We show that the primary determinant of these patterns is shared genealogical history. Only a fraction of the variation (at most 25%) is due to the local mutation rate. By measuring the average distance over which genealogical histories are typically preserved, these data provide the first genome-wide estimate of the average extent of correlation among variants (linkage disequilibrium). The results are best explained by extreme variability in the recombination rate at a fine scale, and provide the first empirical evidence that such recombination 'hot spots' are a general feature of the human genome and have a principal role in shaping genetic variation in the human population.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Correlation in heterozygosity.
Figure 2: Cis versus trans comparisons.
Figure 3: Impact of gene history on the correlation in heterozygosity.
Figure 4: Correlation in mutation rate (inferred from sequence divergence).
Figure 5: Correlation in gene history.
Figure 6: Comparison of the observed and simulated correlation in gene history under a range of models of human demographic history and recombination.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Sachidanandam, R. et al. A map of human genome sequence variation containing 1.42 million single nucleotide polymorphisms. Nature 409, 928–933 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Li, W.H. & Sadler, L.A. Low nucleotide diversity in man. Genetics 129, 513–523 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Altshuler, D. et al. An SNP map of the human genome generated by reduced representation shotgun sequencing. Nature 407, 513–516 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Mullikin, J.C. et al. An SNP map of human chromosome 22. Nature 407, 516–520 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Lander, E.S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Cargill, M. et al. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nature Genet. 22, 231–238 (1999).

    Article  CAS  PubMed  Google Scholar 

  7. Cambien, F. et al. Sequence diversity in 36 candidate genes for cardiovascular disorders. Am. J. Hum. Genet. 65, 183–191 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Halushka, M.K. et al. Patterns of single-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis. Nature Genet. 22, 239–247 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Wang, D.G. et al. Large-scale identification, mapping, and genotyping of single- nucleotide polymorphisms in the human genome. Science 280, 1077–1082 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Venter, J.C. et al. The sequence of the human genome. Science 291, 1304–1351 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. Li, W.-H. Molecular Evolution (Sinauer Associates, Sunderland, Massachusetts, 1997).

  12. Griffiths, R.C. in Selected Proceedings of the Sheffield Symposium on Applied Probability, IMS Lecture Notes Vol. 18 (eds I.V. Basawa & R.L. Taylor) 100–117 (Institute of Mathematical Statistics, 1991).

    Book  Google Scholar 

  13. Griffiths, R.C. Neutral two-locus multiple allele models with recombination. Theor. Popul. Biol. 19, 169–186 (1981).

    Article  Google Scholar 

  14. Kaplan, N. & Hudson, R.R. The use of sample genealogies for studying a selectively neutral m-loci model with recombination. Theor. Popul. Biol. 28, 382–396 (1985).

    Article  CAS  PubMed  Google Scholar 

  15. Hudson, R.R. Properties of a neutral allele model with intragenic recombination. Theor. Popul. Biol. 23, 183–201 (1983).

    Article  CAS  PubMed  Google Scholar 

  16. Hudson, R.R. in Oxford Surveys in Evolutionary Biology (eds Futuyma, D.J. & Antonovics, J.) 1–44 (Oxford Univ. Press, Oxford, 1990).

    Google Scholar 

  17. Sved, J.A. Linkage disequilibrium and homozygosity of chromosome segments in finite populations. Theor. Popul. Biol. 2, 125–141 (1971).

    Article  CAS  PubMed  Google Scholar 

  18. Yu, A. et al. Comparison of human genetic and sequence-based physical maps. Nature 409, 951–953 (2001).

    Article  CAS  PubMed  Google Scholar 

  19. Hudson, R.R. Testing the constant-rate neutral allele model with protein sequence data. Evolution 37, 203–217 (1983).

    Article  PubMed  Google Scholar 

  20. Takahata, N. & Satta, Y. Evolution of the primate lineage leading to modern humans: phylogenetic and demographic inferences from DNA sequences. Proc. Natl Acad. Sci. USA 94, 4811–4815 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kimura, M. The Neutral Theory of Molecular Evolution (Cambridge Univ. Press, Cambridge, 1983).

    Book  Google Scholar 

  22. Lander, E.S. & Schork, N.J. Genetic dissection of complex traits. Science 265, 2037–2048 (1994).

    Article  CAS  PubMed  Google Scholar 

  23. Kruglyak, L. Prospects for whole-genome linkage disequilibrium mapping of common disease genes. Nature Genet. 22, 139–144 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Risch, N.J. Searching for genetic determinants in the new millennium. Nature 405, 847–856 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Devlin, B. & Risch, N. A comparison of linkage disequilibrium measures for fine-scale mapping. Genomics 29, 311–322 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. Strobeck, C. & Morgan, K. The effect of intragenic recombination on the number of alleles in a finite population. Genetics 88, 829–844 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ohta, T. & Kimura, M. Linkage disequilibrium between two segregating nucleotide sites under the steady flux of mutations in a finite populations. Genetics 68, 571–580 (1971).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Reich, D.E. et al. Linkage disequilibrium in the human genome. Nature 411, 199–204 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Abecasis, G.R. et al. Extent and distribution of linkage disequilibrium in three genomic regions. Am. J. Hum. Genet. 68, 191–197 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Dunning, A.M. et al. The extent of linkage disequilibrium in four populations with distinct demographic histories. Am. J. Hum. Genet. 67, 1544–1554 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Taillon-Miller, P. et al. Juxtaposed regions of extensive and minimal linkage disequilibrium in human Xq25 and Xq28. Nature Genet. 25, 324–328 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Gabriel, S.B. et al. The structure of haplotype blocks in the human genome. Science 297, 2225–2229 (2002); published online 23 May 2002 (10.1126/science.1069424).

    Article  Google Scholar 

  33. Przeworski, M., Hudson, R.R. & Di Rienzo, A. Adjusting the focus on human variation. Trends. Genet. 16, 296–302 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Reich, D.E. & Goldstein, D.B. Genetic evidence for a Paleolithic human population expansion in Africa. Proc. Natl Acad. Sci. USA 95, 8119–8123 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kimmel, M. et al. Signatures of population expansion in microsatellite repeat data. Genetics 148, 1921–1930 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Tishkoff, S.A. et al. Global patterns of linkage disequilibrium at the CD4 locus and modern human origins. Science 271, 1380–1387 (1996).

    Article  CAS  PubMed  Google Scholar 

  37. Wakeley, J. Nonequilibrium migration in human history. Genetics 153, 1863–1871 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Chakravarti, A. et al. Nonuniform recombination within the human β-globin gene cluster. Am. J. Hum. Genet. 36, 1239–1258 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Daly, M.J., Rioux, J.D., Schaffner, S.F., Hudson, T.J. & Lander, E.S. High-resolution haplotype structure in the human genome. Nature Genet. 29, 229–232 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Jeffreys, A.J., Ritchie, A. & Neumann, R. High resolution analysis of haplotype diversity and meiotic crossover in the human TAP2 recombination hotspot. Hum. Mol. Genet. 9, 725–733 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Jeffreys, A.J., Kauppi, L. & Neumann, R. Intensely punctate meiotic recombination in the class II region of the major histocompatibility complex. Nature Genet. 29, 217–222 (2001).

    Article  CAS  PubMed  Google Scholar 

  42. Cavalli-Sforza, L.L., Menozzi, P. & Piazza, A. The History and Geography of Human Genes (Princeton Univ. Press, Princeton, New Jersey, 1994).

    Google Scholar 

  43. Kong, A. A high resolution recombination map of the human genome. Nature Genet. 31, 241–247 (2002); advance online publication, 10 June 2002 (doi:10.1038/ng917).

    Article  CAS  PubMed  Google Scholar 

  44. Lui, B.H. in Statistical Genomics: Linkage, Mapping, and QTL Analysis (CRC Press, Boca Raton, Florida, 1998).

    Google Scholar 

  45. Broman, K.W., Murray, J.C., Sheffield, V.C., White, R.L. & Weber, J.L. Comprehensive human genetic maps: individual and sex-specific variation in recombination. Am. J. Hum. Genet. 63, 861–869 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nachman, M.W. & Crowell, S.L. Estimate of the mutation rate per nucleotide in humans. Genetics 156, 297–304 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank T. Lavery, A. Rachupka and J. Platko for assistance with great ape sequencing; B. Gilman for computer support; D. Cutler, P. Donnelly, J. Hirschhorn, L. Kruglyak, S. Myers, J. Pritchard and J. Wakeley for discussions and advice; and the laboratory of E. Green and the Baylor Sequencing Center for depositing large-insert chimpanzee sequences into GenBank. D.E.R. was supported in part by a National Defense Science and Engineering fellowship. D.A. is a Charles E. Culpeper Scholar of the Rockefeller Brothers Fund and a Burroughs Wellcome Fund Clinical Scholar in Translational Research. This work was supported by grants from The SNP Consortium to E.S.L. and D.A., the Massachusetts General Hospital to D.A. and the National Institutes of Health to E.S.L..

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Altshuler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reich, D., Schaffner, S., Daly, M. et al. Human genome sequence variation and the influence of gene history, mutation and recombination. Nat Genet 32, 135–142 (2002). https://doi.org/10.1038/ng947

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng947

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing