Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genome-wide association study and mouse model identify interaction between RET and EDNRB pathways in Hirschsprung disease

Abstract

Genetic studies of Hirschsprung disease, a common congenital malformation, have identified eight genes with mutations that can be associated with this condition. Mutations at individual loci are, however, neither necessary nor sufficient to cause clinical disease. We conducted a genome-wide association study in 43 Mennonite family trios using 2,083 microsatellites and single-nucleotide polymorphisms and a new multipoint linkage disequilibrium method that searches for association arising from common ancestry. We identified susceptibility loci at 10q11, 13q22 and 16q23; the gene at 13q22 is EDNRB, encoding a G protein–coupled receptor (GPCR) and the gene at 10q11 is RET, encoding a receptor tyrosine kinase (RTK). Statistically significant joint transmission of RET and EDNRB alleles in affected individuals and non-complementation of aganglionosis in mouse intercrosses between Ret null and the Ednrb hypomorphic piebald allele are suggestive of epistasis between EDNRB and RET. Thus, genetic interaction between mutations in RET and EDNRB is an underlying mechanism for this complex disorder.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Genomic structure and linkage disequilibrium at RET.
Figure 2: Acetylcholinesterase staining of whole-mount mouse intestinal tract.

Similar content being viewed by others

References

  1. Puffenberger, E.G. et al. Identity-by-descent and association mapping of a recessive gene for Hirschsprung disease on human chromosome 13q22. Hum. Mol. Genet. 3, 1217–1225 (1994).

    Article  CAS  Google Scholar 

  2. Puffenberger, E.G. et al. A missense mutation of the endothelin-B receptor gene in multigenic Hirschsprung's disease. Cell 79, 1257–1266 (1994).

    Article  CAS  Google Scholar 

  3. Badner, J.A., Sieber, W.K., Garver, K.L. & Chakravarti, A. A genetic study of Hirschsprung disease. Am. J. Hum. Genet. 46, 568–580 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Chakravarti, A. & Lyonnet, S. Hirschsprung disease. in The Metabolic and Molecular Bases of Inherited Disease 8th edn (eds Scriver, C.R., Beaudet, A.L., Valle, D., Sly, W.S., Childs, B., Kinzler, K. & Vogelstein, B.) 6231–6255 (McGraw–Hill, New York, 2001).

    Google Scholar 

  5. Amiel, J. et al. Large-scale deletions and SMADIP1 truncating mutations in syndromic Hirschsprung disease with involvement of midline structures. Am. J. Hum. Genet. 69, 1370–1377 (2001).

    Article  CAS  Google Scholar 

  6. Chakravarti, A. Endothelin receptor-mediated signaling in Hirschsprung disease. Hum. Mol. Genet. 5, 303–307 (1996).

    CAS  PubMed  Google Scholar 

  7. Bergey, L.L. The early settlement of Waterloo Township, Ontario, Canada. Pa. Mennon. Herit. 15, 9–20 (1992).

    Google Scholar 

  8. Bolk, S. et al. A human model for multigenic inheritance: phenotypic expression in Hirschsprung disease requires both the RET gene and a new 9q31 locus. Proc. Natl Acad. Sci. USA 97, 268–273 (2000).

    Article  CAS  Google Scholar 

  9. Gabriel, S.B. et al. Segregation at three loci explains familial and population risk in Hirschsprung disease. Nat. Genet. 31, 89–93 (2002).

    Article  CAS  Google Scholar 

  10. Takeuchi, T. et al. Expression of T-cadherin (CDH13, H-Cadherin) in human brain and its characteristics as a negative growth regulator of epidermal growth factor in neuroblastoma cells. J. Neurochem. 74, 1489–1497 (2000).

    Article  CAS  Google Scholar 

  11. Borrello, M.G. et al. The full oncogenic activity of Ret/ptc2 depends on tyrosine 539, a docking site for phospholipase C gamma. Mol. Cell. Biol. 16, 2151–2163 (1996).

    Article  CAS  Google Scholar 

  12. Obermeier, A. et al. Neuronal differentiation signals are controlled by nerve growth factor receptor/Trk binding sites for SHC and PLC gamma. EMBO J. 13, 1585–1590 (1994).

    Article  CAS  Google Scholar 

  13. Fitze, G., Schreiber, M., Kuhlisch, E., Schackert, H.K. & Roesner, D. Association of RET protooncogene codon 45 polymorphism with Hirschsprung disease. Am. J. Hum. Genet. 65, 1469–1473 (1999).

    Article  CAS  Google Scholar 

  14. Borrego, S. et al. Specific polymorphisms in the RET proto-oncogene are over-represented in patients with Hirschsprung disease and may represent loci modifying phenotypic expression. J. Med. Genet. 36, 771–774 (1999).

    Article  CAS  Google Scholar 

  15. Borrego, S. et al. RET genotypes comprising specific haplotypes of polymorphic variants predispose to isolated Hirschsprung disease. J. Med. Genet. 37, 572–578 (2000).

    Article  CAS  Google Scholar 

  16. Lane, P.W. Association of megacolon with two recessive spotting genes in the mouse. J. Hered. 57, 181–183 (1966).

    Article  Google Scholar 

  17. Shin, M.K., Russell, L.B. & Tilghman, S.M. Molecular characterization of four induced alleles at the Ednrb locus. Proc. Natl Acad. Sci. USA 94, 13105–13110 (1997).

    Article  CAS  Google Scholar 

  18. Schuchardt, A., D'Agati, V., Larsson-Blomberg, L., Costantini, F. & Pachnis, V. Defects in the kidney and enteric nervous system of mice lacking the tyrosine kinase receptor Ret. Nature 367, 380–383 (1994).

    Article  CAS  Google Scholar 

  19. Webster, W. Aganglionic megacolon in piebald-lethal mice. Arch. Pathol. 97, 111–117 (1974).

    CAS  PubMed  Google Scholar 

  20. Hosoda, K. et al. Targeted and natural (piebald-lethal) mutations of endothelin-B receptor gene produce megacolon associated with spotted coat color in mice. Cell 79, 1267–1276 (1994).

    Article  CAS  Google Scholar 

  21. Pachnis, V., Mankoo, B. & Costantini, F. Expression of the c-ret proto-oncogene during mouse embryogenesis. Development 119, 1005–1017 (1993).

    CAS  PubMed  Google Scholar 

  22. Nataf, V., Lecoin, L., Eichmann, A. & Le Douarin, N.M. Endothelin-B receptor is expressed by neural crest cells in the avian embryo. Proc. Natl Acad. Sci. USA 93, 9645–9650 (1996).

    Article  CAS  Google Scholar 

  23. Leibl, M.A. et al. Expression of endothelin 3 by mesenchymal cells of embryonic mouse caecum. Gut 44, 246–252 (1999).

    Article  CAS  Google Scholar 

  24. Bourne, H.R. Signal transduction. Team blue sees red. Nature 376, 727–729 (1995).

    Article  CAS  Google Scholar 

  25. van Biesen, T. et al. Receptor-tyrosine-kinase- and G β γ-mediated MAP kinase activation by a common signalling pathway. Nature 376, 781–784 (1995).

    Article  CAS  Google Scholar 

  26. Prenzel, N. et al. EGF receptor transactivation by G-protein-coupled receptors requires metalloproteinase cleavage of proHB-EGF. Nature 402, 884–888 (1999).

    Article  CAS  Google Scholar 

  27. Luttrell, L.M., Daaka, Y. & Lefkowitz, R.J. Regulation of tyrosine kinase cascades by G-protein-coupled receptors. Curr. Opin. Cell. Biol. 11, 177–183 (1999).

    Article  CAS  Google Scholar 

  28. Auricchio, A. et al. Double heterozygosity for a RET substitution interfering with splicing and an EDNRB missense mutation in Hirschsprung disease. Am. J. Hum. Genet. 64, 1216–1221 (1999).

    Article  CAS  Google Scholar 

  29. Rhim, H. et al. Spatially restricted hypopigmentation associated with an Ednrbs-modifying locus on mouse chromosome 10. Genome Res. 10, 17–29 (2000).

    CAS  PubMed  Google Scholar 

  30. Miller, S.A., Dykes, D.D. & Polesky, H.F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 16, 1215 (1988).

  31. Weissenbach, J. et al. A second-generation linkage map of the human genome. Nature 359, 794–801 (1992).

    Article  CAS  Google Scholar 

  32. Ceccherini, I. et al. Identification of the Cys634→Tyr mutation of the RET proto-oncogene in a pedigree with multiple endocrine neoplasia type 2A and localized cutaneous lichen amyloidosis. J. Endocrinol. Invest. 17, 201–204 (1994).

    Article  CAS  Google Scholar 

  33. Mulligan, L.M. et al. Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature 363, 458–460 (1993).

    Article  CAS  Google Scholar 

  34. Lairmore, T.C. et al. A 1.5-megabase yeast artificial chromosome contig from human chromosome 10q11.2 connecting three genetic loci (RET, D10S94, and D10S102) closely linked to the MEN2A locus. Proc. Natl Acad. Sci. USA 90, 492–496 (1993).

    Article  CAS  Google Scholar 

  35. Kent, W.J. BLAT—the BLAST-like alignment tool. Genome Res. 12, 656–664 (2002).

    Article  CAS  Google Scholar 

  36. Gordon, D., Abajian, C. & Green, P. Consed: a graphical tool for sequence finishing. Genome Res. 8, 195–202 (1998).

    Article  CAS  Google Scholar 

  37. Andrew, S.D., Delhanty, P.J., Mulligan, L.M. & Robinson, B.G. Sp1 and Sp3 transactivate the RET proto-oncogene promoter. Gene 256, 283–291 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank previous and current members of the Chakravarti lab for their contributions to this study, helpful discussions and comments on this manuscript; J. Scott for invaluable help in family recruitment; and A. Lynn for map construction. This study was begun at the Department of Genetics of Case Western Reserve University and is a portion of the Ph.D. dissertation of M.M.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aravinda Chakravarti.

Ethics declarations

Competing interests

A.C. is a paid member of the Scientific Advisory Board of Affymetrix. The terms of this arrangement are being managed by Johns Hopkins University in accordance with its conflict of interest policies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carrasquillo, M., McCallion, A., Puffenberger, E. et al. Genome-wide association study and mouse model identify interaction between RET and EDNRB pathways in Hirschsprung disease. Nat Genet 32, 237–244 (2002). https://doi.org/10.1038/ng998

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng998

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing