Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Global nitrogen deposition and carbon sinks

Abstract

Land and ocean uptake of carbon dioxide plays a critical role in determining atmospheric carbon dioxide levels. Future increases in nitrogen deposition have been predicted to increase the size of these terrestrial and marine carbon sinks, but although higher rates of nitrogen deposition might enhance carbon uptake in northern and tropical forests, they will probably have less of an impact on ocean sink strength. Combined, the land and ocean sinks may sequester an additional 10% of anthropogenic cabon emissions by 2030 owing to increased nitrogen inputs, but a more conservative estimate of 1 to 2% is more likely. Thus nitrogen-induced increases in the strength of land and ocean sinks are unlikely to keep pace with future increases in carbon dioxide.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The global carbon cycle for the 1990s.
Figure 2: Global trends in reactive nitrogen production and emissions.
Figure 3: Global distribution of total Nr deposition with three different nitrogen deposition forcings.
Figure 4: Global distribution of oceanic nitrogen deposition with three different nitrogen deposition forcings.

Similar content being viewed by others

References

  1. Canadell, J. G. et al. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc. Natl Acad. Sci. USA 104, 18866–18870 (2007).

    Article  Google Scholar 

  2. Raupach, M. R. et al. Global and regional drivers of accelerating CO2 emissions. Proc. Natl Acad. Sci. USA 104, 10288–10293 (2007).

    Article  Google Scholar 

  3. Denman, K. L. et al. in Climate Change 2007: The Physical Science Basis — Contribution of Working Group 1 to the Fouth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon, S. et al.) 499–587 (Cambridge University Press, Cambridge, UK, 2007).

    Google Scholar 

  4. Thornton, P. E., Lamarque, J., Rosenbloom, N. A. & Mahowald, N. M. Influence of carbon-nitrogen cycle coupling on land model response to CO2 fertilization and climate variability. Global Biogeochem. Cycles 21, 10.1029/2006GB002868 (2007).

  5. Reay, D., Sabine, C., Smith, P. & Hymus, G. Climate change 2007: Spring-time for sinks. Nature 446, 727–728 (2007).

    Article  Google Scholar 

  6. Heimann, M. & Reichstein, M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451, 289–292 (2008).

    Article  Google Scholar 

  7. Prentice, I. C. et al. in Climate Change 2001: The Scientific Basis — Contribution of Working Group 1 to the Third Assessment Report of the Intergovernmental Panel on Climate Change (eds Houghton, J. T. et al.) 183–237 (Cambridge University Press, Cambridge, UK, 2001).

    Google Scholar 

  8. Lamarque, J.-F. et al. Assessing future nitrogen deposition and carbon cycle feedback using a multimodel approach: Analysis of nitrogen deposition. J. Geophys. Res. 110, 10.1029/2005JD005825 (2005).

  9. Reich, P. B. et al. Nitrogen limitation constrains sustainability of ecosystem response to CO2 . Nature 440, 922–925 (2006).

    Article  Google Scholar 

  10. Dentener, F. et al. Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation. Global Biogeochem. Cycles 20, 10.1029/2005GB002672 (2006).

    Article  Google Scholar 

  11. Gruber, N. & Galloway, J. N. An Earth-system perspective of the global nitrogen cycle. Nature 451, 293–296 (2008).

    Article  Google Scholar 

  12. Galloway, J. N. et al. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 320, 889–892 (2008).

    Article  Google Scholar 

  13. Vitousek, P. M. et al. Human alteration of the global nitrogen cycle: Sources and consequences. Ecol. Appl. 7, 737–750 (1997).

    Google Scholar 

  14. Elser, J. J. et al. Global analysis of nitrogen and phosphorous limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 10, 1135–1142 (2007).

    Article  Google Scholar 

  15. Galloway, J. N. et al. Nitrogen cycles: Past, present, and future. Biogeochemistry. 70, 153–226 (2004).

    Article  Google Scholar 

  16. Krishnamurthy, A., Moore, J. K., Zender, C. S. & Luo, C. Effects of atmospheric inorganic nitrogen deposition on ocean biogeochemistry. J. Geophys. Res. 112, 10.1029/2006JG000334 (2007).

  17. Kienast, F. & Luxmore, R. J. Tree-ring analysis and conifer growth responses to increased atmospheric CO2 levels. Oecologia 76, 1432–1939 (1988).

    Article  Google Scholar 

  18. Spiecker, H. Overview of recent growth trends in European forests. Water, Air Soil Poll. 116, 33–46 (1988).

    Article  Google Scholar 

  19. Spiecker, H., Mielikäinen, K., Köhl, M. & Skovsgaard, J. P. Growth Trends in European Forests (European Forest Institute Research Report No. 5, Springer-Verlag, Berlin, 1996).

    Book  Google Scholar 

  20. Phillips, O. L. et al. Changes in the carbon balance of tropical forests: Evidence from long-term plots. Science 282, 439–442 (1998).

    Article  Google Scholar 

  21. Tamm, C. O. Nitrogen in Terrestrial Ecosystems (Springer, Heidelberg, 1991).

    Book  Google Scholar 

  22. Vitousek, P. M. & Howarth, R. W. Nitrogen limitation on land and in the sea- how can it occur? Biogeochemistry 13, 87–115 (1991).

    Article  Google Scholar 

  23. Fowler D., Cape J. N. & Unsworth M. H. Deposition of atmospheric pollutants on forests. Phil. Trans. R. Soc. Lon. B 324, 247–265 (1989).

    Article  Google Scholar 

  24. Duyzer, J. H., Verhagen, H. L., Weststrate, J. H. & Bosveld, F. C. Measurement of the dry deposition flux of NH3 on to coniferous forest. Env. Poll. 75, 3–13 (1992).

    Article  Google Scholar 

  25. LeBauer, D. S. & Treseder K. K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89, 371–379 (2008).

    Article  Google Scholar 

  26. De Vries, W., Reinds, G. J., Gundersen, P. & Hubert Sterba, H. The impact of nitrogen deposition on carbon sequestration in European forests and forest soils. Global Change Biol. 12, 1151–1173 (2006).

    Article  Google Scholar 

  27. Hyvönen, R., Persson, T., Andersson, S., Olsson, B., Ågren, G. I. & Linder, S. Impact of long-term nitrogen addition on carbon stocks in trees and soils in northern Europe. Biogeochemistry 10.1007/s10533-007-9121-3 (2007).

  28. Nadelhoffer, K. J. et al. Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests. Nature 398, 145–148 (1999).

    Article  Google Scholar 

  29. Magnani, F. et al. The human footprint in the carbon cycle of temperate and boreal forests. Nature 447, 848–851 (2007).

    Article  Google Scholar 

  30. Magnani, F. et al. Nature 451, E3–E4 (2008).

    Article  Google Scholar 

  31. Sievering, H., Tomaszewski, T. & Torizzo, J. Canopy uptake of atmospheric N depostion at a conifer forest. Part 1 – Canopy N budget, photosynthetic efficiency and net ecosystem exchange. Tellus 59B, 483–492 (2007).

    Article  Google Scholar 

  32. Brown, S. & Lugo, A. E. Tropical secondary forests. J. Trop. Ecol. 6, 1–32 (1990).

    Article  Google Scholar 

  33. Phoenix, G. K. et al. Atmospheric nitrogen deposition in world biodiversity hotspots: the need for a greater global perspective in assessing N deposition impacts. Global Change Biol. 12, 470–476 (2006).

    Article  Google Scholar 

  34. Skeffington, R. A. & Wilson, E. J. Excess nitrogen deposition: issues for consideration. Env. Poll. 54, 159–184 (1988).

    Article  Google Scholar 

  35. Aber, J. et al. Nitrogen saturation in temperate forest ecosystems. Bioscience 48, 921–934 (1998).

    Article  Google Scholar 

  36. Gundersen, P. Nitrogen deposition and the forest nitrogen cycle: Role of denitrification. Forest Ecol. Man. 44, 15–28 (1991).

    Article  Google Scholar 

  37. Lisovoi, N., Filatov, V. & Revenko, O. The influence of long-term fertilization on the crop yield and fertility of the typical chernozem in the left bank forest steppe region of the Ukraine [in Russian]. Agrokhimia 2, 27–31 (2001).

    Google Scholar 

  38. Shevtsova, L. et al. Effect of natural and agricultural factors on long-term soil organic matter dynamics in arable soils — modelling and observation. Geoderma 116, 165–190 (2003).

    Article  Google Scholar 

  39. Kowalenko, C. C., Ivarson, K. C. & Cameron, D. R. Effect of moisture content, temperature, and nitrogen fertilization on carbon dioxide evolution from field soils. Soil Biol. Biochem. 10, 417–423 (1978).

    Article  Google Scholar 

  40. Henriksen, T. M. & Breland, T. A. Nitrogen availability effects on carbon mineralization, fungal and bacterial growth, and enzyme activities during decomposition of wheat straw in soil. Soil Biol. Biochem. 31, 1121–1134. (1999).

    Article  Google Scholar 

  41. Glendining, M. J. & Powlson, D. S. in Soil Management: Experimental Basis for Sustainability and Environmental Quality. (eds Lal, R. & Stewart, B. A.) 385–446 (Lewis Publishers, Boca Raton, Florida, 1995).

    Google Scholar 

  42. Khan, S. A., Mulvaney, R. L., Ellsworth, T. R. & Boast, C. W. The myth of nitrogen fertilization for soil carbon sequestration. J. Env. Qual. 36, 1821–1832 (2007).

    Article  Google Scholar 

  43. Gallardo, A. & Schlesinger, W. H. Factors limiting microbial biomass in the mineral soil and forest floor of a warm-temperate forest. Soil Biol. Biochem. 26, 1409–1415 (1994).

    Article  Google Scholar 

  44. Brume, R. & Besse, F. Effects of liming and nitrogen fertilization on emissions of CO2 and N2O from a temperate forest. J. Geophys. Res. 97, 12851–12858 (1992).

    Article  Google Scholar 

  45. Bowden, R. D., Davidson, E, Savage, K., Arabia, C. & Steudler, P. Chronic nitrogen additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest. Forest Ecol. Man. 196, 43–56 (2004).

    Article  Google Scholar 

  46. Neilsen, W. A., Pataczek, W., Lynch, T. & Pyrke, R. Growth response of Pinus radiata to multiple applications of nitrogen fertilizer and evaluation of the quantity of added nitrogen remaining in the forest system. Plant Soil 144, 207–217 (1992).

    Article  Google Scholar 

  47. Harding, R. B. & Jokela, E. J. Long-term effects of forest fertilization on site organic matter and nutrients. Soil Sci. Soc. Am. J. 58, 216–221 (1994).

    Article  Google Scholar 

  48. Schlesinger, W. H. & Andrews, J. A. Soil respiration and the global carbon cycle. Biogeochemistry 48, 7–20 (2000).

    Article  Google Scholar 

  49. Magill, A. H. et al. Ecosystem response to 15 years of chronic nitrogen additions at the Harvard Forest LTER, Massachusetts, USA. Forest Ecol. Man. 196, 7–28 (2004).

    Article  Google Scholar 

  50. Persson, T., Karlsson, P. S., Seyferth, U., Sjöberg, R. M. & Rudebeck, A. in Carbon and Nitrogen Cycling in European Forest Ecosystems (ed. Schulze, E. D.) 257–275 (Springer-Verlag, Berlin, 2000).

    Book  Google Scholar 

  51. Franklin, O., Högberg, P., Ekblad, A. & Ågren, G. I. Pine forest floor carbon accumulation in response to N and PK additions — bomb 14C modelling and respiration studies. Ecosystems 6, 644–658 (2003).

    Article  Google Scholar 

  52. Hyvönen, R. et al. The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytol. 173, 463–480 (2007b).

    Article  Google Scholar 

  53. Pregitzer, K. S., Burton, A. J., Zak, D. R, & Talhelm, A. F. Simulated chronic nitrogen deposition increases carbon storage in Northern Temperate forests. Global Change Biol. 14, 142–153 (2008).

    Google Scholar 

  54. Craine, J. M., Morrow, C. & Fierer, N. Microbial nitrogen limitation increases decomposition. Ecology 88, 2105–2113 (2007).

    Article  Google Scholar 

  55. Hobbie, S. E. Interactions between litter lignin and soil nitrogen availability during leaf litter decomposition in a Hawaiian montane forest. Ecosystems 3, 484–494 (2000).

    Article  Google Scholar 

  56. Vestgarden, L. S. Carbon and nitrogen turnover in the early stage of Scots pine (Pinus sylvestris L.) needle litter decomposition: effects of internal and external nitrogen. Soil Biol. Biochem. 33, 465–474 (2001).

    Article  Google Scholar 

  57. Knorr, M., Frey, S. D. & Curtis, P. S. Nitrogen additions and litter decomposition: a meta-analysis. Ecology 86, 3252–3257 (2005).

    Article  Google Scholar 

  58. Prescott, C. E. Does nitrogen availability control rates of litter decomposition in forests? Plant Soil 169, 83–88 (1995).

    Article  Google Scholar 

  59. Hobbie, S. E. & Vitousek, P. M. Nutrient limitation of decomposition in Hawaiian forests. Ecology 81, 1867–1877 (2000).

    Article  Google Scholar 

  60. Knops, J. M. H., Naeem, S. & Reich, P. B. The impact of elevated CO2, increased nitrogen availability and biodiversity on plant tissue quality and decomposition. Global Change Biol. 13, 1960–1971 (2007).

    Article  Google Scholar 

  61. Magill, A. H. & Aber, J. D. Long-term effects of experimental nitrogen additions on foliar litter decay and humus formation in forest ecosystems. Plant Soil 203, 301–311 (1998).

    Article  Google Scholar 

  62. Bender, M. L. et al. Atmospheric O2/N2 changes, 1993–2002: Implications for the partitioning of fossil fuel CO2 sequestration. Global Biogeochem. Cycles 19, 10.1029/2004GB002410 (2005).

    Article  Google Scholar 

  63. Gloor, M., Gruber, N., Sarmiento, J., Sabine, C. L., Feely, R. A. & Rodenbeck, C. A first estimate of present and preindustrial air-sea CO2 flux patterns based on ocean interior carbon measurements and models. Geophys. Res. Lett. 30, 10.1029/2002GL015594 (2003).

  64. Gurney, K. R., Law, R. M., Denning, A. S., Rayner, P. J., Pak, B. and the TransCom-3L2 modelers. Transcom-3 inversion intercomparison: Control results for the estimation of seasonal carbon sources and sinks. Global Biogeochem. Cycles 18, 10.1029/2003GB002111 (2004).

    Article  Google Scholar 

  65. Jacobson, A. R., Mikaloff-Fletcher, S. E., Gruber, N., Sarmiento, J. L. & Gloor, M. A joint atmosphere-ocean inversion for surface fluxes of carbon dioxide: 2. Regional results. Global Biogeochem. Cycles 21, 10.1029/2006GB002703 (2007).

  66. Mikaloff-Fletcher, S. E. et al. Inverse estimates of anthropogenic CO2 uptake, transport, and storage by the ocean. Global Biogeochem. Cycles 20, 10.1029/2005GB002530 (2006).

    Article  Google Scholar 

  67. Patra, P. K., Maksyutov, S., Ishizawa, M., Nakazawa, T., Takahashi, T. & Ukita, J. Interannual and decadal changes in the sea-air CO2 flux from atmospheric CO2 inverse modeling. Global Biogeochem. Cycles 19, 10.1029/2004GB002257 (2005).

  68. Sabine, C. L. et al. The oceanic sink for anthropogenic CO2 . Science 305, 367–371 (2004).

    Article  Google Scholar 

  69. Takahashi, T. et al. Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Res. II 49, 1601–1622 (2002).

    Article  Google Scholar 

  70. Feely, R. A. et al. Seasonal and interannual variability of CO2 in the equatorial Pacific. Deep-Sea Res. II 49, 2443–2469 (2002).

    Article  Google Scholar 

  71. Feely, R. A. et al. Decadal variability of the air-sea CO2 fluxes in the equatorial Pacific Ocean. J. Geophys. Res. 111, 10.1029/2005jc003129 (2006).

  72. Lenton, A. & Matear, R. J. Role of the Southern Anular Mode (SAM) in the Southern Ocean CO2 uptake. Global Biogeochem. Cycles 21, 10.1029/2006GB002714 (2007).

  73. Lovenduski, N. S., Gruber, N., Doney, S. & Lima, I. D. Enhanced CO2 outgassing in the Southern Ocean from a positive phase of the Southern Annular Mode. Global Biogeochem. Cycles 21, 10.1029/2006GB002900 (2007).

  74. Le Quèrè, C. et al. Saturation of the Southern Ocean CO2 sink due to recent climate change. Science 316, 1735–1738 (2007).

    Article  Google Scholar 

  75. Schuster, U. & Watson, A. J. W. A variable and decreasing sink for atmospheric CO2 in the North Atlantic. J. Geophys. Res. 112, 10.1029/2006JC003941 (2007).

  76. Sarmiento, J. L. & Le Quéré, C. Oceanic carbon dioxide uptake in a model of century-scale global warming. Science 274, 1346–1350 (1996).

    Article  Google Scholar 

  77. Sarmiento, J. L., Hughes, T. M. C, Stouffer, R. J. & Manabe, S. Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature 393, 245–249 (1998).

    Article  Google Scholar 

  78. Joos, F., Plattner, G. K., Stocker, T. F., Marchal, O. & Schmittner, A. Global warming and marine carbon cycle feedbacks on future atmospheric CO2 . Science 284, 464–467 (1999).

    Article  Google Scholar 

  79. Matear, R. J. & Hirst, A. C. Climate change feedback on the future oceanic CO2 uptake, Tellus Ser. B 51, 722–733 (1999).

    Article  Google Scholar 

  80. Greenblatt, J. B. & Sarmiento, J. L. in The Global Carbon Cycle (eds Field, C. B & Raupach, M. R.) 257–275 (Island Press, Washington DC, 2004).

    Google Scholar 

  81. Fung, I., Doney, S. C., Lindsay, K. & Jasmin, J. Evolution of carbon sinks in a changing climate. Proc. Natl Acad. Sci. USA 102, 11201–11206 (2006).

    Article  Google Scholar 

  82. Boville, B. A. & Gent, P. R. The NCAR Climate System Model, version one. J. Climate 11, 1115–1130 (1998).

    Article  Google Scholar 

  83. Doney, S. C. et al. Impact of anthropogenic atmospheric nitrogen and sulfur deposition on ocean acidification and the inorganic carbon system. Proc. Nat. Acad. Sci. USA 104, 14580–14585 (2007).

    Article  Google Scholar 

  84. Duce, R. A. et al. Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science 320, 893–897 (2008).

    Article  Google Scholar 

  85. Friedlingstein, P., Dufresne, J. L., Cox, P. M. & Rayner, P. How positive is the feedback between climate change and the carbon cycle. Tellus Ser. B 55, 692–700 (2003).

    Article  Google Scholar 

  86. Boyd, P. & Doney, S. C., Modelling regional responses by marine pelagic ecosystems to global climate change. Geophys. Res. Lett. 29, 10.1029/2001GL014130 (2002).

  87. Hood, R. R. et al. Pelagic functional group modeling: Progress, challenges and prospects. Deep-Sea Res. Pt. II 53, 459–512 (2006).

    Article  Google Scholar 

  88. Watson, A. J. & Orr, J. C. in Ocean Biogeochemistry: The Role of the Ocean Carbon Cycle in Global Change (a JGOFS Synthesis) (eds Fasham, M., Field, J., Platt, T. & Zeitzschel, B.) 123–141 (Springer, Berlin, 2003).

    Book  Google Scholar 

  89. Global Forest Resources Assessment 2005: Progress Towards Sustainable Forest Management. (Food and Agriculture Organisation of the United Nations, Rome, 2006).

  90. Churkina, G. et al. Contributions of nitrogen deposition and forest regrowth to terrestrial carbon uptake. Carbon Balance Manage. 2, 10.1186/1750-0680-2-5 (2007).

  91. 2006 IPCC Guidelines for National Greenhouse Gas Inventories (eds Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K.) (National Greenhouse Gas Inventories Programme, Hayama, Japan, 2006).

  92. Crutzen, P. J., Mosier, A. R., Smith, K. A. & Winiwarter, W. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos. Chem. Phys. Discuss. 7, 11191–11205 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Alessandro Cescatti for comments and advice on Nr deposition and interactions. This work was supported by a Natural Environment Research Council UK fellowship award (to D.S.R).

Author information

Authors and Affiliations

Authors

Contributions

D.S.R. drafted the manuscript and developed the estimates of the potential global carbon sink response to future Nr inputs. P.S., J.G., F.D and R.A.F. each drafted sections of the manuscript. All authors contributed to further development and discussion of the manuscript.

Corresponding author

Correspondence to Dave S. Reay.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary table 1 (PDF 104 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reay, D., Dentener, F., Smith, P. et al. Global nitrogen deposition and carbon sinks. Nature Geosci 1, 430–437 (2008). https://doi.org/10.1038/ngeo230

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo230

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing