Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress Article
  • Published:

Carbon accumulation in European forests

Abstract

European forests are intensively exploited for wood products, yet they also form a sink for carbon. European forest inventories, available for the past 50 years, can be combined with timber harvest statistics to assess changes in this carbon sink. Analysis of these data sets between 1950 and 2000 from the EU-15 countries excluding Luxembourg, plus Norway and Switzerland, reveals that there is a tight relationship between increases in forest biomass and forest ecosystem productivity but timber harvests grew more slowly. Encouragingly, the environmental conditions in combination with the type of silviculture that has been developed over the past 50 years can efficiently sequester carbon on timescales of decades, while maintaining forests that meet the demand for wood. However, a return to using wood as biofuel and hence shorter rotations in forestry could cancel out the benefits of carbon storage over the past five decades.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Whole tree standing carbon stocks as a function of total NPP (green), woody NPP (brown) and harvest removals (red).
Figure 2: Evolution of NPP as a function of forest area from national data averaged over for the EU-15, excluding Luxembourg, plus Norway and Switzerland.
Figure 3: Observed trend of forest biomass stocks and future predictions.

Similar content being viewed by others

References

  1. Behre, K. E. in Handbook of Vegetation Science Vol. 7 (eds Huntley, B. & Webb, T.) 633–672 (Kluwer Academic Publisher, Dordrecht, 1988).

    Google Scholar 

  2. Bradshaw,R. H. W. Past anthropogenic influence on genetic structure and diversity within European forests. For. Ecol. Manage. 197, 203–212 (2004).

    Article  Google Scholar 

  3. Nabuurs,G. J., Schelhaas, M. J., Mohren, G. M. J. & Field, C. B. Temporal evolution of the European forest sector carbon sink from 1950 to 1999. Global Change Biol. 9, 152–160 (2003).

    Article  Google Scholar 

  4. Zianis, D., Muukkonen, P., Mäkipää, R. & Mencuccini, M. Biomass and Stem Volume Equations for Tree Species in Europe Silva Fennica Monographs No 4 (Finnish Society of Forest Science, Finnish Forest Research Institute, Helsinki, 2005).

    Google Scholar 

  5. Liski, J., Perruchoud, D. & Karjalainen, T. Increasing carbon stocks in the forest soils of western Europe. For. Ecol. Manage. 169, 159–175 (2002).

    Article  Google Scholar 

  6. Liski, J., Korotkov, A. V., Prins, C. F. L., Karjalainen, T., Victor, D. G. & Kauppi, P. E. Increased carbon sink in temperate and boreal forests. Clim. Change 61, 89–99 (2003).

    Article  Google Scholar 

  7. Goodale, C. L. et al. Forest carbon sinks in the Northern Hemisphere. Ecol. Appl. 2, 891–899 (2002).

    Article  Google Scholar 

  8. Nabuurs, G. J. et al. in Climate Change 2007: Mitigation — Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Metz, B., Davidson, O., Bosch, P., Dave, R. & Meyer, L.) 541–584 (Cambridge University Press, Cambridge, 2007).

    Google Scholar 

  9. Caspersen, J. P., Pacala, S. W., Jenkins, J., Hurtt, G. C., Moorcroft, P. R. & Birdsey, R. A. Contributions of land-use history to carbon accumulation in US forests. Science 290, 1148–1151 (2000).

    Article  Google Scholar 

  10. Kauppi, P. E., Ausubel, J. H., Fang, J., Mather, A. S., Sedjo, R. A. & Waggoner, P. E. Proc. Natl Acad. Sci. USA 103, 17574–17579 (2006).

    Article  Google Scholar 

  11. Kuusela, K. Forest Resources in Europe 1950–1990. European Forest Institute Research Report 1 (Cambridge University Press, New York, 1994).

    Book  Google Scholar 

  12. Liski, J. & Kauppi, P. in Forest Resources of Europe, CIS, North America, Australia, Japan and New Zealand (Industrialized Temperate/Boreal Countries) — UN–ECE/ Contribution to the Global Forest Resources Assessment 2000 155–171 (United Nations, New York, Geneva, 2000).

    Google Scholar 

  13. Clark, D. A., Brown, S., Kicklighter, D., Chambers, J., Thomlinson, J. R. & Ni, J. Measuring net primary production in forests: concepts and field methods. Ecol. Appl. 11, 11356–11370 (2001).

    Google Scholar 

  14. Litton, C. M., Raich, J. W. & Ryan M. G. Carbon allocation in forest ecosystems. Glob. Chang. Biol. 13, 2089–2109 (2007).

    Article  Google Scholar 

  15. Muukkonen, P. Needle biomass turnover rates of Scots pine (Pinus sylvestris L.) derived from the needle-shed dynamics. Trees 19, 273–279, (2005).

    Article  Google Scholar 

  16. Kurz, W. A., Beukema, S. J. & Apps, M. J. Estimation of root biomass and dynamics for the carbon budget model of the Canadian forest sector. Can. J. For. Res. 26, 1973–1979, (1996).

    Article  Google Scholar 

  17. Vogt, K. A., Vogt, D. J., Palmiotto, P. A., Boon, P., Hara, J. & Asbjornsen, H. Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant Soil 187, 159–219 (1996).

    Article  Google Scholar 

  18. Withington, J. M., Reich, P. B., Oleksyn, J. & Eissenstat, D. M. Comparisons of structure and life span in roots and leaves among temperate trees. Ecol. Monog. 76, 381–397 (2006).

    Article  Google Scholar 

  19. Gill, R. A. & Jackson, R. B. Global patterns of root turnover for terrestrial ecosystems. New Phytol. 147, 13–31 (2000).

    Article  Google Scholar 

  20. Strand, A. E., Pritchard, S. G., McCormack, M. L., Davis, M. A. & Oren, R. Irreconcilable differences: fine-root life spans and soil carbon persistence. Science 319, 456–458 (2008).

    Article  Google Scholar 

  21. Luyssaert, S. et al. The CO2-balance of boreal, temperate and tropical forests derived from a global database. Global Change Biol. 13, 2509–2537 (2007).

    Article  Google Scholar 

  22. Cotta, H. Anweisung zum Waldbau [Instructions for silviculture] (Arnoldische Buchhandlung, Dresden, 1817).

    Google Scholar 

  23. Trenberth, K. et al. in Climate Change 2007: The Physical Basis — Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon, S. et al.) (Cambridge University Press, Cambridge, 2007).

    Google Scholar 

  24. Krinner, G., et al. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochem. Cycles 19, doi:10.1029/2003GB002199 (2005).

  25. Loveland, T. R. et al. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens. 21, 1303–1330 (2000).

    Article  Google Scholar 

  26. Mitchell, T. D. & Jones, P. D. An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol. 25, 693–712 (2005).

    Article  Google Scholar 

  27. Magnani, F. et al. The human footprint in the carbon cycle of temperate and boreal forests. Nature 447, 848–852 (2007).

    Article  Google Scholar 

  28. de Vries, W. et al. Ecologically implausible carbon response? Nature 451, E1–E3 (2008).

    Article  Google Scholar 

  29. Vetter, M. et al. Partitioning direct and indirect human-induced effects on carbon sequestration of managed coniferous forests using model simulations and forest inventories. Global Change Biol. 11, 810–827 (2005).

    Article  Google Scholar 

  30. Zaehle, S. et al. The importance of age-related decline in forest NPP for modeling regional carbon balances. Ecol. Appl. 16, 1555–1574 (2006).

    Article  Google Scholar 

  31. Study on European Forestry Information and Communication System: Reports on Forest Inventory and Survey Systems (European Commission, Luxembourg, 1997).

  32. German Federal Ministry of Food, Agriculture and Consumer Protection The Second National Forest Inventory – NFI-2. Results (Federal Inventory Administration, 2006).

  33. Spiecker, H. Growth Trends in European Forests. European Forest Institute Research Report 5 (Springer-Verlag, Berlin, 1996).

    Book  Google Scholar 

  34. Becker, M. et al. in Forest Decline and Atmospheric Deposition Effects in the French Mountains (eds Landmann, G. & Bonneau, M.) 120–142 (Springer-Verlag, Berlin, 1995).

    Book  Google Scholar 

  35. Motta, R. & Nola, P. Growth trends and dynamics in sub-alpine forest stands in the Varaita Valley (Piedmont, Italy) and their relationships with human activities and global change. J. Veg Sci. 12, 219–230 (2001).

    Article  Google Scholar 

  36. Nicolussi, K., Bortenschlager, S. & Körner, C. Increase in tree-ring width in subalpine Pinus cembra from the central Alps that may be CO2-related. Trees 9, 181–189, (1995).

    Article  Google Scholar 

  37. Rolland, C., Petitcolas, V. & Michalet, R. Changes in radial tree growth for Picea abies, Larix deciduas, Pinus cembra and Pinus uncinata near the alpine timberline since 1750. Trees 13, 40–50 (1998).

    Google Scholar 

  38. Schelhaas, M. J. et al. Outlook for the Development of European Forest Resources. (UN-ECE, Geneva, 2006).

    Google Scholar 

  39. Höhne, N., Wartmann, S., Herold, A. & Freibauer, A. The rules for land use, land use change and forestry under the Kyoto Protocol—lessons learned for the future climate negotiations. Environ. Sci. Policy 10, 353–369 (2007).

    Article  Google Scholar 

  40. Report of the Conference of the Parties Serving as the Meeting of the Parties to the Kyoto Protocol Montreal 2005, Addendum, FCCC/KP/CMP/2005/8/Add.3 (United Nations, 2006).

  41. Proposal for a directive of the European Parliament and of the Council on the promotion of the use of energy from renewable sources (Commission of the European Communities, Brussels, 2008).

  42. Ragwitz, M. et al. FORRES Analysis of the Renewable Energy Sources' Evolution up to 2020. Final Report (Karlsruhe, 2005).

    Google Scholar 

  43. Boyer, J. S. Biochemical and biophysical aspects of water deficits and the predisposition to disease. Ann. Rev. Phytopathol. 33, 251–274 (1995).

    Article  Google Scholar 

  44. Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

This article benefited from the work done under the CAMELS project (EVK2-CT-2002-00151) the CARBOEUROPE-IP project (No. GOCE-CT-2003-505572) and the GREENCYCLES Marie Curie RTN (MRTN-CT-2004-512464), all funded by the European Commission. P.C. acknowledges the support of Commissariat à l'Energie Atomique in France. S.L. was funded by the Research Foundation, Flanders (FWO-Vlaanderen).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Ciais.

Supplementary information

Supplementary Information

Supplementary information S1 (PDF 448 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciais, P., Schelhaas, M., Zaehle, S. et al. Carbon accumulation in European forests. Nature Geosci 1, 425–429 (2008). https://doi.org/10.1038/ngeo233

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo233

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing