Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Basophils enhance immunological memory responses

Abstract

The cellular basis of immunological memory remains a controversial issue. Here we show that basophils bound large amounts of intact antigens on their surface and were the main source of interleukins 6 and 4 in the spleen and bone marrow after restimulation with a soluble antigen. Depletion of basophils resulted in a much lower humoral memory response and greater susceptibility of immunized mice to sepsis induced by Streptococcus pneumoniae. Adoptive transfer of antigen-reactive basophils significantly increased specific antibody production, and activated basophils, together with CD4+ T cells, profoundly enhanced B cell proliferation and immunoglobulin production. These basophil-dependent effects on B cells required interleukins 6 and 4 and increased the capacity of CD4+ T cells to provide B cell help. Thus, basophils are important contributors to humoral memory immune responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Antigen binding and activation of basophils.
Figure 2: Lower humoral memory response after depletion of basophils.
Figure 3: Fewer antigen-specific B cells and plasma cells after restimulation of mice in the absence of basophils.
Figure 4: Influence of basophils on humoral memory responses during immunization, vaccination and infection.
Figure 5: Enhancement of humoral immune responses by transfer of APC-reactive basophils.
Figure 6: Activated basophils support B cell function.
Figure 7: Basophil-derived IL–6 is required for B cell stimulation.
Figure 8: Influence of CD4+ T cell activation on basophil-induced B cell proliferation and cytokine production.
Figure 9: Basophils induce a 'B helper' phenotype in CD4+ T cells.

Similar content being viewed by others

References

  1. McHeyzer-Williams, L.J., Malherbe, L.P. & McHeyzer-Williams, M.G. Checkpoints in memory B-cell evolution. Immunol. Rev. 211, 255–268 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Zinkernagel, R.M. & Hengartner, H. Protective 'immunity' by pre-existent neutralizing antibody titers and preactivated T cells but not by so-called 'immunological memory'. Immunol. Rev. 211, 310–319 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Manz, R.A., Thiel, A. & Radbruch, A. Lifetime of plasma cells in the bone marrow. Nature 388, 133–134 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Julius, M.H., Masuda, T. & Herzenberg, L.A. Demonstration that antigen-binding cells are precursors of antibody-producing cells after purification with a fluorescence-activated cell sorter. Proc. Natl. Acad. Sci. USA 69, 1934–1938 (1972).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. McHeyzer-Williams, L.J. & McHeyzer-Williams, M.G. Antigen-specific memory B cell development. Annu. Rev. Immunol. 23, 487–513 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Fagarasan, S. & Honjo, T. T-independent immune response: new aspects of B cell biology. Science 290, 89–92 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Mack, M. et al. Identification of antigen-capturing cells as basophils. J. Immunol. 174, 735–741 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Bell, J. & Gray, D. Antigen-capturing cells can masquerade as memory B cells. J. Exp. Med. 197, 1233–1244 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wolniak, K.L., Noelle, R.J. & Waldschmidt, T.J. Characterization of (4-hydroxy-3-nitrophenyl)acetyl (NP)-specific germinal center B cells and antigen-binding B220 cells after primary NP challenge in mice. J. Immunol. 177, 2072–2079 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Driver, D.J., McHeyzer-Williams, L.J., Cool, M., Stetson, D.B. & McHeyzer-Williams, M.G. Development and maintenance of a B220 memory B cell compartment. J. Immunol. 167, 1393–1405 (2001).

    Article  CAS  PubMed  Google Scholar 

  11. McHeyzer-Williams, L.J., Cool, M. & McHeyzer-Williams, M.G. Antigen-specific B cell memory: expression and replenishment of a novel B220 memory B cell compartment. J. Exp. Med. 191, 1149–1166 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Prussin, C. & Metcalfe, D.D. 5. IgE, mast cells, basophils, and eosinophils. J. Allergy Clin. Immunol. 117, 450–456 (2006).

    Article  Google Scholar 

  13. Gibbs, B.F. Human basophils as effectors and immunomodulators of allergic inflammation and innate immunity. Clin. Exp. Med. 5, 43–49 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Lantz, C.S. et al. Role for interleukin-3 in mast-cell and basophil development and in immunity to parasites. Nature 392, 90–93 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Kawakami, T. & Galli, S.J. Regulation of mast-cell and basophil function and survival by IgE. Nat. Rev. Immunol. 2, 773–786 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Valent, P. et al. Interleukin 3 activates human blood basophils via high-affinity binding sites. Proc. Natl. Acad. Sci. USA 86, 5542–5546 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bischoff, S.C., Brunner, T., De Weck, A.L. & Dahinden, C.A. Interleukin 5 modifies histamine release and leukotriene generation by human basophils in response to diverse agonists. J. Exp. Med. 172, 1577–1582 (1990).

    Article  CAS  PubMed  Google Scholar 

  18. Bischoff, S.C., Krieger, M., Brunner, T. & Dahinden, C.A. Monocyte chemotactic protein 1 is a potent activator of human basophils. J. Exp. Med. 175, 1271–1275 (1992).

    Article  CAS  PubMed  Google Scholar 

  19. Yoshimoto, T. et al. IL-18, although antiallergic when administered with IL-12, stimulates IL-4 and histamine release by basophils. Proc. Natl. Acad. Sci. USA 96, 13962–13966 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Geiser, T., Dewald, B., Ehrengruber, M.U., Clark-Lewis, I. & Baggiolini, M. The interleukin-8-related chemotactic cytokines GROα, GROβ, and GROγ activate human neutrophil and basophil leukocytes. J. Biol. Chem. 268, 15419–15424 (1993).

    CAS  PubMed  Google Scholar 

  21. Sokol, C.L., Barton, G.M., Farr, A.G. & Medzhitov, R. A mechanism for the initiation of allergen-induced T helper type 2 responses. Nat. Immunol. 9, 310–318 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gauchat, J.F. et al. Induction of human IgE synthesis in B cells by mast cells and basophils. Nature 365, 340–343 (1993).

    Article  CAS  PubMed  Google Scholar 

  23. Mukai, K. et al. Basophils play a critical role in the development of IgE-mediated chronic allergic inflammation independently of T cells and mast cells. Immunity 23, 191–202 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Ben-Sasson, S.Z., Le Gros, G., Conrad, D.H., Finkelman, F.D. & Paul, W.E. Cross-linking Fc receptors stimulate splenic non-B, non-T cells to secrete interleukin 4 and other lymphokines. Proc. Natl. Acad. Sci. USA 87, 1421–1425 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Seder, R.A. et al. Mouse splenic and bone marrow cell populations that express high-affinity Fcε receptors and produce interleukon 4 are enriched in basophils. Proc. Natl. Acad. Sci. USA 88, 2835–2839 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Min, B. et al. Basophils produce IL-4 and accumulate in tissues after infection with a Th2-inducing parasite. J. Exp. Med. 200, 507–517 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hessel, E.M. et al. Immunostimulatory oligonucleotides block allergic airway inflammation by inhibiting Th2 cell activation and IgE-mediated cytokine induction. J. Exp. Med. 202, 1563–1573 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hida, S., Tadachi, M., Saito, T. & Taki, S. Negative control of basophil expansion by IRF-2 critical for the regulation of Th1/Th2 balance. Blood 106, 2011–2017 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. Oh, K., Shen, T., Le Gros, G. & Min, B. Induction of Th2 type immunity in a mouse system reveals a novel immunoregulatory role of basophils. Blood 109, 2921–2927 (2007).

    CAS  PubMed  Google Scholar 

  30. Khodoun, M.V., Orekhova, T., Potter, C., Morris, S. & Finkelman, F.D. Basophils initiate IL-4 production during a memory T-dependent response. J. Exp. Med. 200, 857–870 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Takai, T., Ono, M., Hikida, M., Ohmori, H. & Ravetch, J.V. Augmented humoral and anaphylactic responses in FcγRII-deficient mice. Nature 379, 346–349 (1996).

    Article  CAS  PubMed  Google Scholar 

  32. Kuhn, R., Rajewsky, K. & Muller, W. Generation and analysis of interleukin-4 deficient mice. Science 254, 707–710 (1991).

    Article  CAS  PubMed  Google Scholar 

  33. Maurer, D. et al. Expression of functional high affinity immunoglobulin E receptors (FcεRI) on monocytes of atopic individuals. J. Exp. Med. 179, 745–750 (1994).

    Article  CAS  PubMed  Google Scholar 

  34. Maurer, D. et al. Peripheral blood dendritic cells express FcεRI as a complex composed of FcεRIα- and FcεRIγ-chains and can use this receptor for IgE-mediated allergen presentation. J. Immunol. 157, 607–616 (1996).

    CAS  PubMed  Google Scholar 

  35. Kita, H. et al. Does IgE bind to and activate eosinophils from patients with allergy? J. Immunol. 162, 6901–6911 (1999).

    CAS  PubMed  Google Scholar 

  36. Langermann, S. et al. Protective humoral response against pneumococcal infection in mice elicited by recombinant bacille Calmette-Guerin vaccines expressing pneumococcal surface protein A. J. Exp. Med. 180, 2277–2286 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Swiatlo, E., King, J., Nabors, G.S., Mathews, B. & Briles, D.E. Pneumococcal surface protein A is expressed in vivo, and antibodies to PspA are effective for therapy in a murine model of pneumococcal sepsis. Infect. Immun. 71, 7149–7153 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gor, D.O., Ding, X., Briles, D.E., Jacobs, M.R. & Greenspan, N.S. Relationship between surface accessibility for PpmA, PsaA, and PspA and antibody-mediated immunity to systemic infection by Streptococcus pneumoniae. Infect. Immun. 73, 1304–1312 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hasbold, J., Corcoran, L.M., Tarlinton, D.M., Tangye, S.G. & Hodgkin, P.D. Evidence from the generation of immunoglobulin G–secreting cells that stochastic mechanisms regulate lymphocyte differentiation. Nat. Immunol. 5, 55–63 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Abbas, A.K., Murphy, K.M. & Sher, A. Functional diversity of helper T lymphocytes. Nature 383, 787–793 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Rincon, M., Anguita, J., Nakamura, T., Fikrig, E. & Flavell, R.A. Interleukin (IL)-6 directs the differentiation of IL-4-producing CD4+ T cells. J. Exp. Med. 185, 461–469 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Kopf, M., Herren, S., Wiles, M.V., Pepys, M.B. & Kosco-Vilbois, M.H. Interleukin 6 influences germinal center development and antibody production via a contribution of C3 complement component. J. Exp. Med. 188, 1895–1906 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Matsuda, T., Yamasaki, K., Taga, T., Hirano, T. & Kishimoto, T. Current concepts of B cell modulation. Int. Rev. Immunol. 5, 97–109 (1989).

    Article  CAS  PubMed  Google Scholar 

  44. Seder, R.A. & Paul, W.E. Acquisition of lymphokine-producing phenotype by CD4+ T cells. Annu. Rev. Immunol. 12, 635–673 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Dombrowicz, D. et al. Absence of FcεRIα chain results in upregulation of FcγRIII-dependent mast cell degranulation and anaphylaxis. Evidence of competition between FcεRI and FcγRIII for limiting amounts of FcR β and γ chains. J. Clin. Invest. 99, 915–925 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Miyajima, I. et al. Systemic anaphylaxis in the mouse can be mediated largely through IgG1 and FcγRIII. Assessment of the cardiopulmonary changes, mast cell degranulation, and death associated with active or IgE- or IgG1-dependent passive anaphylaxis. J. Clin. Invest. 99, 901–914 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Piccinni, M.P. et al. Human bone marrow non-B, non-T cells produce interleukin 4 in response to cross-linkage of Fcε and Fcγ receptors. Proc. Natl. Acad. Sci. USA 88, 8656–8660 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kopf, M. et al. Impaired immune and acute-phase responses in interleukin-6-deficient mice. Nature 368, 339–342 (1994).

    Article  CAS  PubMed  Google Scholar 

  49. Takai, T., Li, M., Sylvestre, D., Clynes, R. & Ravetch, J.V. FcR γ chain deletion results in pleiotrophic effector cell defects. Cell 76, 519–529 (1994).

    Article  CAS  PubMed  Google Scholar 

  50. Winter, C. et al. Lung-specific overexpression of CC chemokine ligand (CCL) 2 enhances the host defense to Streptococcus pneumoniae infection in mice: role of the CCL2–CCR2 axis. J. Immunol. 178, 5828–5838 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Schmidbauer, M. Wondrak and N. Göbel for technical assistance, and D. Schlöndorff for critical reading of the manuscript. Supported by the Deutsche Forschungsgemeinschaft (M.M.) and the University Hospital Regensburg.

Author information

Authors and Affiliations

Authors

Contributions

A.D. contributed to the results in Figures 1,2,3,4,5; U.A.M., C.W., R.M., S.H. and D.E.B. contributed to the results in Figure 4c,d; M.R.G. contributed to the results in Figures 1 and 3; C.M. and L.A.K.-S., contributed to the results in Figures 6,7,8,9; M.N. and Y.T. contributed to the results in Figures 1 and 6,7,8,9; and M.M. contributed to the results in Figures 1,2,3,4,5,6,7,8,9.

Corresponding author

Correspondence to Matthias Mack.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–15 and Supplementary Table 1 (PDF 682 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denzel, A., Maus, U., Gomez, M. et al. Basophils enhance immunological memory responses. Nat Immunol 9, 733–742 (2008). https://doi.org/10.1038/ni.1621

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1621

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing