Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ADAR1 is essential for the maintenance of hematopoiesis and suppression of interferon signaling

A Corrigendum to this article was published on 01 May 2009

This article has been updated

Abstract

The deaminase ADAR1 edits adenosines in nuclear transcripts of nervous tissue and is required in the fetal liver of the developing mouse embryo. Here we show by inducible gene disruption in mice that ADAR1 is essential for maintenance of both fetal and adult hematopoietic stem cells. Loss of ADAR1 in hematopoietic stem cells led to global upregulation of type I and II interferon–inducible transcripts and rapid apoptosis. Our findings identify ADAR1 as an essential regulator of hematopoietic stem cell maintenance and suppressor of interferon signaling that may protect organisms from the deleterious effects of interferon activation associated with many pathological processes, including chronic inflammation, autoimmune disorders and cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ADAR1 is dispensable for the emergence of phenotypic HSCs and multipotent progenitors in the fetal liver.
Figure 2: Near-complete loss of fetal liver contribution to adult bone marrow hematopoiesis after induced ADAR1 deficiency.
Figure 3: Induced deletion of Adar in HSCs of adult mice leads to hyperproliferation and apoptosis.
Figure 4: ADAR1 deficiency in HSCs leads to a global upregulation of interferon-inducible transcripts.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Gene Expression Omnibus

Change history

  • 09 April 2009

    In the version of this article initially published, the Cre-transgenic mouse is identified incorrectly as Tg(SV40-cre)1Jrg. The correct mouse strain should be Tg(SCL6E5-Cre)1Jrg, and the citation describing this mouse (ref. 29) should be as follows: Gothert, J.R. et al. In vivo fate-tracing studies using the Scl stem cell enhancer: embryonic hematopoietic stem cells significantly contribute to adult hematopoiesis. Blood 105, 2724–2732 (2005). The error has been corrected in the HTML and PDF versions of the article.

References

  1. Bass, B.L. RNA editing by adenosine deaminases that act on RNA. Annu. Rev. Biochem. 71, 817–846 (2002).

    Article  CAS  Google Scholar 

  2. Athanasiadis, A., Rich, A. & Maas, S. Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome. PLoS Biol. 2, e391 (2004).

    Article  Google Scholar 

  3. Kim, D.D. et al. Widespread RNA editing of embedded alu elements in the human transcriptome. Genome Res. 14, 1719–1725 (2004).

    Article  CAS  Google Scholar 

  4. Levanon, E.Y. et al. Systematic identification of abundant A-to-I editing sites in the human transcriptome. Nat. Biotechnol. 22, 1001–1005 (2004).

    Article  CAS  Google Scholar 

  5. Kawahara, Y. et al. Redirection of silencing targets by adenosine-to-inosine editing of miRNAs. Science 315, 1137–1140 (2007).

    Article  CAS  Google Scholar 

  6. Luciano, D.J., Mirsky, H., Vendetti, N.J. & Maas, S. RNA editing of a miRNA precursor. RNA 10, 1174–1177 (2004).

    Article  CAS  Google Scholar 

  7. Yang, W. et al. Modulation of microRNA processing and expression through RNA editing by ADAR deaminases. Nat. Struct. Mol. Biol. 13, 13–21 (2006).

    Article  CAS  Google Scholar 

  8. Hartner, J.C. et al. Liver disintegration in the mouse embryo caused by deficiency in the RNA-editing enzyme ADAR1. J. Biol. Chem. 279, 4894–4902 (2004).

    Article  CAS  Google Scholar 

  9. Wang, Q. et al. Stress-induced apoptosis associated with null mutation of ADAR1 RNA editing deaminase gene. J. Biol. Chem. 279, 4952–4961 (2004).

    Article  CAS  Google Scholar 

  10. Higuchi, M. et al. Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature 406, 78–81 (2000).

    Article  CAS  Google Scholar 

  11. Melcher, T. et al. RED2, a brain-specific member of the RNA-specific adenosine deaminase family. J. Biol. Chem. 271, 31795–31798 (1996).

    Article  CAS  Google Scholar 

  12. Herbert, A. et al. A Z-DNA binding domain present in the human editing enzyme, double-stranded RNA adenosine deaminase. Proc. Natl. Acad. Sci. USA 94, 8421–8426 (1997).

    Article  CAS  Google Scholar 

  13. Kim, U., Wang, Y., Sanford, T., Zeng, Y. & Nishikura, K. Molecular cloning of cDNA for double-stranded RNA adenosine deaminase, a candidate enzyme for nuclear RNA editing. Proc. Natl. Acad. Sci. USA 91, 11457–11461 (1994).

    Article  CAS  Google Scholar 

  14. O'Connell, M.A. et al. Cloning of cDNAs encoding mammalian double-stranded RNA-specific adenosine deaminase. Mol. Cell. Biol. 15, 1389–1397 (1995).

    Article  CAS  Google Scholar 

  15. George, C.X., Das, S. & Samuel, C.E. Organization of the mouse RNA-specific adenosine deaminase Adar1 gene 5′-region and demonstration of STAT1-independent, STAT2-dependent transcriptional activation by interferon. Virology 380, 338–343 (2008).

    Article  CAS  Google Scholar 

  16. George, C.X. & Samuel, C.E. Human RNA-specific adenosine deaminase ADAR1 transcripts possess alternative exon 1 structures that initiate from different promoters, one constitutively active and the other interferon inducible. Proc. Natl. Acad. Sci. USA 96, 4621–4626 (1999).

    Article  CAS  Google Scholar 

  17. George, C.X., Wagner, M.V. & Samuel, C.E. Expression of interferon-inducible RNA adenosine deaminase ADAR1 during pathogen infection and mouse embryo development involves tissue-selective promoter utilization and alternative splicing. J. Biol. Chem. 280, 15020–15028 (2005).

    Article  CAS  Google Scholar 

  18. Eckmann, C.R., Neunteufl, A., Pfaffstetter, L. & Jantsch, M.F. The human but not the Xenopus RNA-editing enzyme ADAR1 has an atypical nuclear localization signal and displays the characteristics of a shuttling protein. Mol. Biol. Cell 12, 1911–1924 (2001).

    Article  CAS  Google Scholar 

  19. Samuel, C.E. Antiviral actions of interferons. Clin. Microbiol. Rev. 14, 778–809 (2001).

    Article  CAS  Google Scholar 

  20. Wang, Q., Khillan, J., Gadue, P. & Nishikura, K. Requirement of the RNA editing deaminase ADAR1 gene for embryonic erythropoiesis. Science 290, 1765–1768 (2000).

    Article  CAS  Google Scholar 

  21. Orkin, S.H. & Zon, L.I. Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132, 631–644 (2008).

    Article  CAS  Google Scholar 

  22. Jordan, C.T., McKearn, J.P. & Lemischka, I.R. Cellular and developmental properties of fetal hematopoietic stem cells. Cell 61, 953–963 (1990).

    Article  CAS  Google Scholar 

  23. Okada, S. et al. In vivo and in vitro stem cell function of c-kit- and Sca-1-positive murine hematopoietic cells. Blood 80, 3044–3050 (1992).

    CAS  PubMed  Google Scholar 

  24. Kiel, M.J. et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121 (2005).

    Article  CAS  Google Scholar 

  25. Kim, I., He, S., Yilmaz, O.H., Kiel, M.J. & Morrison, S.J. Enhanced purification of fetal liver hematopoietic stem cells using SLAM family receptors. Blood 108, 737–744 (2006).

    Article  CAS  Google Scholar 

  26. Kuhn, R., Schwenk, F., Aguet, M. & Rajewsky, K. Inducible gene targeting in mice. Science 269, 1427–1429 (1995).

    Article  CAS  Google Scholar 

  27. Hock, H. et al. Gfi-1 restricts proliferation and preserves functional integrity of haematopoietic stem cells. Nature 431, 1002–1007 (2004).

    Article  CAS  Google Scholar 

  28. Mikkola, H.K. et al. Haematopoietic stem cells retain long-term repopulating activity and multipotency in the absence of stem-cell leukaemia SCL/tal-1 gene. Nature 421, 547–551 (2003).

    Article  CAS  Google Scholar 

  29. Gothert, J.R. et al. In vivo fate-tracing studies using the Scl stem cell enhancer: embryonic hematopoietic stem cells significantly contribute to adult hematopoiesis. Blood 105, 2724–2732 (2005).

    Article  Google Scholar 

  30. Lessard, J., Faubert, A. & Sauvageau, G. Genetic programs regulating HSC specification, maintenance and expansion. Oncogene 23, 7199–7209 (2004).

    Article  CAS  Google Scholar 

  31. Randall, T.D. & Weissman, I.L. Phenotypic and functional changes induced at the clonal level in hematopoietic stem cells after 5-fluorouracil treatment. Blood 89, 3596–3606 (1997).

    CAS  PubMed  Google Scholar 

  32. Morrison, S.J. & Weissman, I.L. The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1, 661–673 (1994).

    Article  CAS  Google Scholar 

  33. Sinclair, A., Daly, B. & Dzierzak, E. The Ly-6E.1 (Sca-1) gene requires a 3′ chromatin-dependent region for high-level gamma-interferon-induced hematopoietic cell expression. Blood 87, 2750–2761 (1996).

    CAS  PubMed  Google Scholar 

  34. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  Google Scholar 

  35. Geiss, G. et al. A comprehensive view of regulation of gene expression by double-stranded RNA-mediated cell signaling. J. Biol. Chem. 276, 30178–30182 (2001).

    Article  CAS  Google Scholar 

  36. Nie, Y., Ding, L., Kao, P.N., Braun, R. & Yang, J.H. ADAR1 interacts with NF90 through double-stranded RNA and regulates NF90-mediated gene expression independently of RNA editing. Mol. Cell. Biol. 25, 6956–6963 (2005).

    Article  CAS  Google Scholar 

  37. Krasnoselskaya-Riz, I. et al. Nuclear factor 90 mediates activation of the cellular antiviral expression cascade. AIDS Res. Hum. Retroviruses 18, 591–604 (2002).

    Article  CAS  Google Scholar 

  38. Tsai, F.Y. et al. An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature 371, 221–226 (1994).

    Article  CAS  Google Scholar 

  39. Wang, Z. et al. Regulation of innate immune responses by DAI (DLM-1/ZBP1) and other DNA-sensing molecules. Proc. Natl. Acad. Sci. USA 105, 5477–5482 (2008).

    Article  CAS  Google Scholar 

  40. Apostolou, E. & Thanos, D. Virus infection induces NF-κB-dependent interchromosomal associations mediating monoallelic IFN-β gene expression. Cell 134, 85–96 (2008).

    Article  CAS  Google Scholar 

  41. Walkley, C.R. & Orkin, S.H. Rb is dispensable for self-renewal and multilineage differentiation of adult hematopoietic stem cells. Proc. Natl. Acad. Sci. USA 103, 9057–9062 (2006).

    Article  CAS  Google Scholar 

  42. Walkley, C.R., Shea, J.M., Sims, N.A., Purton, L.E. & Orkin, S.H. Rb regulates interactions between hematopoietic stem cells and their bone marrow microenvironment. Cell 129, 1081–1095 (2007).

    Article  CAS  Google Scholar 

  43. Gordon, K.M., Duckett, L., Daul, B. & Petrie, H.T. A simple method for detecting up to five immunofluorescent parameters together with DNA staining for cell cycle or viability on a benchtop flow cytometer. J. Immunol. Methods 275, 113–121 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Higuchi and P.H. Seeburg (Max-Planck Institute for Medical Research) for Adar mutant mice; K. Rajewsky (Immune Disease Institute, Boston) for Mx1-Cre mice; J. Goethert (University Hospital Essen) for SCL-Cre-ERT mice; the Dana-Farber Cancer Institute and Children's Hospital animal facility staff for care of experimental mice; J. Daley and S. Lazo-Kallanian of the Dana-Farber Cancer Institute flow cytometry facility for assistance with cell sorting; J. Shea for technical assistance; T.R. Golub for support in gene expression analysis; and M. Higuchi, A. Athanasiadis, S. Maas and L. Purton for critical comments on the manuscript. Supported by the Leukemia and Lymphoma Society (C.R.W.) and the Howard Hughes Medical Institute (S.H.O.).

Author information

Authors and Affiliations

Authors

Contributions

J.C.H. conceived the study, designed and did experiments, analyzed and interpreted data and wrote the paper; C.R.W. did experiments and analyzed and interpreted data; J.L. analyzed and interpreted data; and S.H.O. analyzed and interpreted data and wrote the paper.

Corresponding author

Correspondence to Stuart H Orkin.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–14 and Tables 1–4 (PDF 1257 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartner, J., Walkley, C., Lu, J. et al. ADAR1 is essential for the maintenance of hematopoiesis and suppression of interferon signaling. Nat Immunol 10, 109–115 (2009). https://doi.org/10.1038/ni.1680

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1680

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing