Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Proteolysis of NF-κB1 p105 is essential for T cell antigen receptor–induced proliferation

Abstract

To investigate the importance of proteolysis of NF-κB1 p105 induced by the kinase IKK in activation of the transcription factor NF-κB, we generated 'Nfkb1SSAA/SSAA' mice, in which the IKK-target serine residues of p105 were substituted with alanine. Nfkb1SSAA/SSAA mice had far fewer CD4+ regulatory and memory T cells because of cell-autonomous defects. These T cell subtypes require activation of NF-κB by the T cell antigen receptor for their generation, and the Nfkb1SSAA mutation resulted in less activation of NF-κB in CD4+ T cells and proliferation of CD4+ T cells after stimulation of the T cell antigen receptor. The Nfkb1SSAA mutation also blocked the ability of CD4+ T cells to provide help to wild-type B cells during a primary antibody response. IKK-induced p105 proteolysis is therefore essential for optimal T cell antigen receptor–induced activation of NF-κB and mature CD4+ T cell function.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: T cell development in Nfkb1SSAA/SSAA mice.
Figure 2: Nfkb1SSAA/SSAA mice have fewer Treg, Tmem and NKT cells.
Figure 3: T cell subpopulations in chimeric mice.
Figure 4: The Nfkb1SSAA mutation impairs the proliferation of CD4+CD25 T cells.
Figure 5: Nfkb1SSAA/SSAA CD4+ T cells have less TCR-induced entry into S-phase.
Figure 6: The Nfkb1SSAA mutation results in less TCR-induced production of IL-2 by CD4+ T cells.
Figure 7: The Nfkb1SSAA mutation does not affect the survival of CD4+ T cells.
Figure 8: Map3k8−/− mice have normal numbers of Treg, Tmem and NKT cells.
Figure 9: The Nfkb1SSAA mutation results in less TCR-induced activation of NF-κB in CD4+ T cells.

Similar content being viewed by others

References

  1. Li, Q. & Verma, I.M. NF-κB regulation in the immune system. Nat. Rev. Immunol. 2, 725–734 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Siebenlist, U., Franzoso, G. & Brown, K. Structure, regulation and function of NF-κB. Annu. Rev. Cell Biol. 10, 405–455 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Beinke, S. & Ley, S.C. Functions of NF-κB1 and NF-κB2 in immune cell biology. Biochem. J. 382, 393–409 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Karin, M. & Ben-Neriah, Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu. Rev. Immunol. 18, 621–663 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Orian, A. et al. Structural motifs involves in ubiquitin-mediated processing of the NF-κB precursor p105: roles of the glycine-rich region and a downstream ubiquitination domain. Mol. Cell. Biol. 19, 3664–3673 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lang, V. βTrCP-mediated proteolysis of NF-κB1 p105 requires phosphorylation of p105 serines 927 and 932. Mol. Cell. Biol. 23, 402–413 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Heissmeyer, V., Krappmann, D., Hatada, E.N. & Scheidereit, C. Shared pathways of Iκβ kinase-induced SCFβTrCP-mediated ubiquitination and degradation for the NF-κB precursor p105 and IκBα. Mol. Cell. Biol. 21, 1024–1035 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Salmeron, A. et al. Direct phosphorylation of NF-κB p105 by the IκB kinase complex on serine 927 is essential for signal-induced p105 proteolysis. J. Biol. Chem. 276, 22215–22222 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Beinke, S. et al. Lipopolysaccharide activation of the TPL-2/MEK/extracellular signal-regulated kinase mitogen-activated protein kinase cascade is regulated by IκB kinase-induced proteolysis of NF-κB1 p105. Mol. Cell. Biol. 24, 9658–9667 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Waterfield, M., Jin, W., Reiley, W., Zhang, M.Y. & Sun, S.-C. IKKβ is an essential component of the TPL-2 signaling pathway. Mol. Cell. Biol. 24, 6040–6048 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Symons, A., Beinke, S. & Ley, S.C. MAP kinase kinase kinases and innate immunity. Trends Immunol. 27, 40–48 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Schmidt-Supprian, M. et al. Differential dependence of CD4+ CD25+ regulatory and natural killer-like T cells on signals leading to NF-κB activation. Proc. Natl. Acad. Sci. USA 101, 4566–4571 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schmidt-Supprian, M. et al. Mature T cells depend on signaling through the IKK complex. Immunity 19, 377–389 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Lo, J.C. et al. Coordination between NF-κB family members p50 and p52 is essential for mediating LTβR signals in the development and organization of secondary lymphoid tissues. Blood 107, 1048–1055 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fontenot, J. & Rudensky, A.Y. A well adapted reguatory contrivance: regulatory T cell development and the forkhead family of transcription factor Foxp3. Nat. Immunol. 6, 331–337 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Benlagha, K., Weiss, A., Beavis, A., Teyton, L. & Bendelac, A. In vivo identification of glycolipid antigen-specific T cells using fluorescent CD1d tetramers. J. Exp. Med. 191, 1895–1903 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Seder, R.A. & Ahmed, R. Similarities and differences in CD4+ and CD8+ effector and memory T cell generation. Nat. Immunol. 4, 835–842 (2004).

    Article  Google Scholar 

  18. Burchill, M.A., Yang, J., Vang, K.B. & Farrar, M.A. Interleukin-2 receptor signaling in regulatory T cell development and homeostasis. Immunol. Lett. 114, 1–8 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Algarté, M. et al. In vivo regulation of interleukin-2 receptor α gene transcription by the coordinated binding of constitutive and inducible factors in human primary T cells. EMBO J. 14, 5060–5072 (1995).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Dumitru, C.D. et al. TNFα induction by LPS is regulated post-transcriptionally via a TPL2/ERK-dependent pathway. Cell 103, 1071–1083 (2000).

    Article  CAS  PubMed  Google Scholar 

  21. Lang, V. et al. ABIN-2 forms a ternary complex with TPL-2 and NF-κB1 p105 and is essential for TPL-2 protein stability. Mol. Cell. Biol. 24, 5235–5248 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ishikawa, H. et al. Chronic inflammation and susceptibility to bacterial infections in mice lacking the polypeptide (p) 105 precursor (NF-κB1) but expressing p50. J. Exp. Med. 187, 985–996 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mercurio, F., DiDonato, J.A., Rosette, C. & Karin, M. p105 and p98 precursor proteins play an active role in NF-κB-mediated signal transduction. Genes Dev. 7, 705–718 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Rice, N.R., MacKichan, M.L. & Israel, A. The precursor of NF-κB p50 has IκB-like functions. Cell 71, 243–253 (1992).

    Article  CAS  PubMed  Google Scholar 

  25. Liou, H.-C., Nolan, G.P., Ghosh, S., Fujita, T. & Baltimore, D. The NF-κB p50 precursor, p105, contains an internal IκB-like inhibitor that preferentially inhibits p50. EMBO J. 11, 3003–3009 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Moorthy, A.K. & Ghosh, G. p105 IκBγ and prototypical IκBs use a similar mechanism to bind but a different mechanism to regulate the subcellular localization of NF-κB. J. Biol. Chem. 278, 556–566 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Naumann, M., Wulczyn, F.G. & Scheidereit, C. The NF-κB precursor p105 and the proto-oncogene product Bcl-3 are IκB molecules and control nuclear translocation of NF-κB. EMBO J. 12, 213–222 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Basak, S. et al. A fourth IκB protein within the NF-κB signaling module. Cell 128, 369–381 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li, Q., Van Antwerp, D., Mercurio, F., Lee, K.-F. & Verma, I.M. Severe liver degeneration in mice lacking the IκB kinase 2 gene. Science 284, 321–325 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Rudolph, D. et al. Severe liver degeneration and lack of NF-κB activation in NEMO/IKKγ-deficient mice. Genes Dev. 14, 854–862 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Senftleben, U. et al. Activation by IKKα of a second evolutionary conserved, NF-κB signaling pathway. Science 293, 1495–1499 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Kayagaki, N. et al. BAFF/BLys receptor 3 binds the B cell survival factor BAFF ligand through a discrete surface loop and promotes processing of NF-κB2. Immunity 17, 515–524 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Kirberg, J., Berns, A. & von Boehmer, H. Peripheral T cell survival requires continual ligation of the T cell receptor to major histocompatibility complex-encoded molecules. J. Exp. Med. 186, 1269–1275 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kontgen, F. et al. Mice lacking the c-Rel proto-oncogene exhibit defects in lymphocyte proliferation, humoral immunity and interleukin-2 expression. Genes Dev. 9, 1965–1977 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Mora, A.L., Youn, J., Keegan, A.D. & Boothby, M. NF-κB/Rel participation in the lymphokine-dependent proliferation of T lymphoid cells. J. Immunol. 166, 2218–2227 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Greve, B. et al. IκB kinase 2/β deficiency controls expansion of autoreactive T cells and suppress experimental autoimmune encephalomyelitis. J. Immunol. 179, 179–185 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Schmidt-Supprian, M. et al. IκB kinase 2 deficiency in T cells leads to defects in priming, B cell help, germinal center reactions, and homeostatic expansion. J. Immunol. 173, 1612–1619 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Ruland, J. et al. Bcl10 is a positive regulator of antigen receptor-induced activation of NF-κB and neural tube closure. Cell 104, 33–42 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Zheng, Y., Vig, M., Lyons, J., van Parijs, L. & Beg, A.A. Combined deficiency of p50 and cRel in CD4+ T cells reveals an essential requirement for nuclear factor κB in regulating mature T cell survival and in vivo function. J. Exp. Med. 197, 861–874 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Burchill, M.A., Yang, J., Vogtenhuber, C., Blazar, B.R. & Farrar, M.A. IL-2 receptor β-dependent STAT5 activation is required for the development of Foxp3+ regulatory cells. J. Immunol. 178, 280–290 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Tai, X., Cowan, M., Feigenbaum, L. & Singer, A. CD28 costimulation of developing thymocytes induces Foxp3 expression and regulatory T cell differentiation independently of interleukin 2. Nat. Immunol. 6, 152–162 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Dooms, H., Wolslegel, K., Lin, P. & Abbas, A.K. Interleukin-2 enhances CD4+ T cell memory by promoting the generation of IL-7Rα-expressing cells. J. Exp. Med. 204, 547–557 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Papoutsopoulou, S. et al. ABIN-2 is required for optimal activation of the TPL-2/Erk MAP kinase pathway in innate immune responses. Nat. Immunol. 7, 606–615 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Heissmeyer, V., Krappmann, D., Wulczyn, F.G. & Scheidereit, C. NF-κB p105 is a target on IκB kinases and controls signal induction of BCL-3-p50 complexes. EMBO J. 18, 4766–4788 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank P. Tsichlis (Tufts University) and Thomas Jefferson University for Map3k8−/− mice; B. Stockinger and A. O'Garra for advice and critical reading of the manuscript; H. Allen for encouragement at the start of the project; G. Kassiotis for advice on assays for T cell helper function; and the National Institute for Medical Research PhotoGraphics section, Biological Services and flow cytometry service and members of the Ley laboratory for help during the course of this work. Supported by the UK Medical Research Council.

Author information

Authors and Affiliations

Authors

Contributions

S.S. did experiments for Figures 1, 2, 3, 4, 5, 6, 7, 8; M.P.B. generated the Nfkb1SSAA mutant mouse strain and did experiments for Figure 9; S.P. did experiments for Figures 4e,f and 6e,f; J.J. assayed mRNA by quantitative RT-PCR and IL-2 by ELISA and provided technical support for many experiments; V.T. advised in the design of the Nfkb1SSAA targeting construct and the generation of mutant mouse strains; B.S. helped with the experimental design and several in vivo experiments; and S.C.L. designed the experiments in conjunction with S.S., M.P.B., S.P., J.J. and B.S. and wrote the manuscript.

Corresponding author

Correspondence to Steven C Ley.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Methods (PDF 433 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sriskantharajah, S., Belich, M., Papoutsopoulou, S. et al. Proteolysis of NF-κB1 p105 is essential for T cell antigen receptor–induced proliferation. Nat Immunol 10, 38–47 (2009). https://doi.org/10.1038/ni.1685

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1685

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing