Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulation of lymphoid versus myeloid fate 'choice' by the transcription factor Mef2c

Abstract

Despite advances in the identification of lymphoid-restricted progenitor cells, the transcription factors essential for their generation remain to be identified. Here we describe an unexpected function for the myeloid oncogene product Mef2c in lymphoid development. Mef2c deficiency was associated with profound defects in the production of B cells, T cells, natural killer cells and common lymphoid progenitor cells and an enhanced myeloid output. In multipotent progenitors, Mef2c was required for the proper expression of several key lymphoid regulators and restriction of the myeloid fate. Our studies also show that Mef2c was a critical transcriptional target of the transcription factor PU.1 during lymphopoiesis. Thus, Mef2c is a crucial component of the transcriptional network that regulates cell fate 'choice' in multipotent progenitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dynamic expression pattern of Mef2c during hematopoiesis.
Figure 2: Mef2c is essential for normal lymphoid development.
Figure 3: Mef2c is required at the level of the CLP.
Figure 4: Mef2c promotes a lymphoid fate for MPPs at the expense of a myeloid fate.
Figure 5: Antagonistic effect of Mef2c on myeloid differentiation.
Figure 6: Mef2c is a target of PU.1.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Adolfsson, J. et al. Upregulation of Flt3 expression within the bone marrow LinSca1+c-kit+ stem cell compartment is accompanied by loss of self-renewal capacity. Immunity 15, 659–669 (2001).

    Article  CAS  Google Scholar 

  2. Welner, R.S., Pelayo, R. & Kincade, P.W. Evolving views on the genealogy of B cells. Nat. Rev. Immunol. 8, 95–106 (2008).

    Article  CAS  Google Scholar 

  3. Igarashi, H., Gregory, S.C., Yokota, T., Sakaguchi, N. & Kincade, P.W. Transcription from the RAG1 locus marks the earliest lymphocyte progenitors in bone marrow. Immunity 17, 117–130 (2002).

    Article  CAS  Google Scholar 

  4. Akashi, K., Traver, D., Miyamoto, T. & Weissman, I.L. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404, 193–197 (2000).

    Article  CAS  Google Scholar 

  5. Georgopoulos, K. et al. The Ikaros gene is required for the development of all lymphoid lineages. Cell 79, 143–156 (1994).

    Article  CAS  Google Scholar 

  6. Scott, E.W., Simon, M.C., Anastasi, J. & Singh, H. Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. Science 265, 1573–1577 (1994).

    Article  CAS  Google Scholar 

  7. Dahl, R. & Simon, M.C. The importance of PU.1 concentration in hematopoietic lineage commitment and maturation. Blood Cells Mol. Dis. 31, 229–233 (2003).

    Article  CAS  Google Scholar 

  8. Dias, S., Xu, W., McGregor, S. & Kee, B. Transcriptional regulation of lymphocyte development. Curr. Opin. Genet. Dev. 18, 441–448 (2008).

    Article  CAS  Google Scholar 

  9. Grounds, M.D. Towards understanding skeletal muscle regeneration. Pathol. Res. Pract. 187, 1–22 (1991).

    Article  CAS  Google Scholar 

  10. Swanson, B.J., Jack, H.M. & Lyons, G.E. Characterization of myocyte enhancer factor 2 (MEF2) expression in B and T cells: MEF2C is a B cell-restricted transcription factor in lymphocytes. Mol. Immunol. 35, 445–458 (1998).

    Article  CAS  Google Scholar 

  11. Martin, J.F., Schwarz, J.J. & Olson, E.N. Myocyte enhancer factor (MEF) 2C: a tissue-restricted member of the MEF-2 family of transcription factors. Proc. Natl. Acad. Sci. USA 90, 5282–5286 (1993).

    Article  CAS  Google Scholar 

  12. Du, Y., Spence, S.E., Jenkins, N.A. & Copeland, N.G. Cooperating cancer-gene identification through oncogenic-retrovirus-induced insertional mutagenesis. Blood 106, 2498–2505 (2005).

    Article  CAS  Google Scholar 

  13. Palmqvist, L., Pineault, N., Wasslavik, C. & Humphries, R.K. Candidate genes for expansion and transformation of hematopoietic stem cells by NUP98-HOX fusion genes. PLoS ONE 2, e768 (2007).

    Article  Google Scholar 

  14. Krivtsov, A.V. et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 442, 818–822 (2006).

    Article  CAS  Google Scholar 

  15. Nagel, S. et al. MEF2C is activated by multiple mechanisms in a subset of T-acute lymphoblastic leukemia cell lines. Leukemia 22, 600–607 (2008).

    Article  CAS  Google Scholar 

  16. Dodou, E., Verzi, M.P., Anderson, J.P., Xu, S.M. & Black, B.L. Mef2c is a direct transcriptional target of ISL1 and GATA factors in the anterior heart field during mouse embryonic development. Development 131, 3931–3942 (2004).

    Article  CAS  Google Scholar 

  17. Vong, L.H., Ragusa, M.J. & Schwarz, J.J. Generation of conditional Mef2cloxP/loxP mice for temporal- and tissue-specific analyses. Genesis 43, 43–48 (2005).

    Article  CAS  Google Scholar 

  18. Kuhn, R., Schwenk, F., Aguet, M. & Rajewsky, K. Inducible gene targeting in mice. Science 269, 1427–1429 (1995).

    Article  CAS  Google Scholar 

  19. Gerber, H.P. et al. VEGF regulates haematopoietic stem cell survival by an internal autocrine loop mechanism. Nature 417, 954–958 (2002).

    Article  CAS  Google Scholar 

  20. Lin, Q., Schwarz, J., Bucana, C. & Olson, E.N. Control of mouse cardiac morphogenesis and myogenesis by transcription factor MEF2C. Science 276, 1404–1407 (1997).

    Article  CAS  Google Scholar 

  21. Arnold, M.A. et al. MEF2C transcription factor controls chondrocyte hypertrophy and bone development. Dev. Cell 12, 377–389 (2007).

    Article  CAS  Google Scholar 

  22. Lin, Q. et al. Requirement of the MADS-box transcription factor MEF2C for vascular development. Development 125, 4565–4574 (1998).

    CAS  PubMed  Google Scholar 

  23. Izon, D. et al. A common pathway for dendritic cell and early B cell development. J. Immunol. 167, 1387–1392 (2001).

    Article  CAS  Google Scholar 

  24. Xu, J. et al. Myocyte enhancer factors 2A and 2C induce dilated cardiomyopathy in transgenic mice. J. Biol. Chem. 281, 9152–9162 (2006).

    Article  CAS  Google Scholar 

  25. Dakic, A. et al. PU.1 regulates the commitment of adult hematopoietic progenitors and restricts granulopoiesis. J. Exp. Med. 201, 1487–1502 (2005).

    Article  CAS  Google Scholar 

  26. Houston, I.B., Kamath, M.B., Schweitzer, B.L., Chlon, T.M. & DeKoter, R.P. Reduction in PU.1 activity results in a block to B-cell development, abnormal myeloid proliferation, and neonatal lethality. Exp. Hematol. 35, 1056–1068 (2007).

    Article  CAS  Google Scholar 

  27. Kamath, M.B. et al. Dose-dependent repression of T-cell and natural killer cell genes by PU.1 enforces myeloid and B-cell identity. Leukemia 22, 1214–1225 (2008).

    Article  CAS  Google Scholar 

  28. De Val, S. et al. Mef2c is activated directly by Ets transcription factors through an evolutionarily conserved endothelial cell-specific enhancer. Dev. Biol. 275, 424–434 (2004).

    Article  CAS  Google Scholar 

  29. DeKoter, R.P., Lee, H.J. & Singh, H.P.U. 1 regulates expression of the interleukin-7 receptor in lymphoid progenitors. Immunity 16, 297–309 (2002).

    Article  CAS  Google Scholar 

  30. Dias, S., Mansson, R., Gurbuxani, S., Sigvardsson, M. & Kee, B.L. E2A proteins promote development of lymphoid-primed multipotent progenitors. Immunity 29, 217–227 (2008).

    Article  CAS  Google Scholar 

  31. Molkentin, J.D., Black, B.L., Martin, J.F. & Olson, E.N. Cooperative activation of muscle gene expression by MEF2 and myogenic bHLH proteins. Cell 83, 1125–1136 (1995).

    Article  CAS  Google Scholar 

  32. Schuler, A. et al. The MADS transcription factor Mef2c is a pivotal modulator of myeloid cell fate. Blood 111, 4532–4541 (2008).

    Article  Google Scholar 

  33. Nutt, S.L., Metcalf, D., D'Amico, A., Polli, M. & Wu, L. Dynamic regulation of PU.1 expression in multipotent hematopoietic progenitors. J. Exp. Med. 201, 221–231 (2005).

    Article  CAS  Google Scholar 

  34. Steidl, U. et al. Essential role of Jun family transcription factors in PU.1 knockdown-induced leukemic stem cells. Nat. Genet. 38, 1269–1277 (2006).

    Article  CAS  Google Scholar 

  35. Rao, S., Karray, S., Gackstetter, E.R. & Koshland, M.E. Myocyte enhancer factor-related B-MEF2 is developmentally expressed in B cells and regulates the immunoglobulin J chain promoter. J. Biol. Chem. 273, 26123–26129 (1998).

    Article  CAS  Google Scholar 

  36. Porse, B.T. et al. E2F repression by C/EBPα is required for adipogenesis and granulopoiesis in vivo. Cell 107, 247–258 (2001).

    Article  CAS  Google Scholar 

  37. Zhang, P. et al. Enhancement of hematopoietic stem cell repopulating capacity and self-renewal in the absence of the transcription factor C/EBPα. Immunity 21, 853–863 (2004).

    Article  CAS  Google Scholar 

  38. Johnnidis, J.B. et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 451, 1125–1129 (2008).

    Article  CAS  Google Scholar 

  39. Camargo, F.D., Chambers, S.M., Drew, E., McNagny, K.M. & Goodell, M.A. Hematopoietic stem cells do not engraft with absolute efficiencies. Blood 107, 501–507 (2006).

    Article  CAS  Google Scholar 

  40. DeKoter, R.P. & Singh, H. Regulation of B lymphocyte and macrophage development by graded expression of PU*1. Science 288, 1439–1441 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Schwartz (Albany Medical College) and Brian Black (University of California, San Francisco) for mutant mice; G. Bell and P. Thiru for microarray data analysis; members of the Jaenisch laboratory for discussions; R. Jimenez for mouse handling and technical support; and L. Lawton (Whitehead Institute for Biomedical Research) for reagents. Supported by the Whitehead Institute Fellows (F.D.C.) and the National Institutes of Health (AI052175 to R.P.D.).

Author information

Authors and Affiliations

Authors

Contributions

S.S.-S. designed and did most of the experiments and wrote the manuscript; J.D. and R.P.D. did experiments relevant to PU.1 biology and provided intellectual input; S.L.N. provided critical reagents; and F.D.C. did experiments, designed and supervised research and wrote the manuscript.

Corresponding author

Correspondence to Fernando D Camargo.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11, Table 1 and Supplementary Methods (PDF 924 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stehling-Sun, S., Dade, J., Nutt, S. et al. Regulation of lymphoid versus myeloid fate 'choice' by the transcription factor Mef2c. Nat Immunol 10, 289–296 (2009). https://doi.org/10.1038/ni.1694

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1694

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing