Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The function of follicular helper T cells is regulated by the strength of T cell antigen receptor binding

An Addendum to this article was published on 21 March 2011

This article has been updated

Abstract

How follicular helper T cells (TFH cells) differentiate to regulate B cell immunity is critical for effective protein vaccination. Here we define three transcription factor T-bet–expressing antigen-specific effector helper T cell subsets with distinguishable function, migratory properties and developmental programming in vivo. Expression of the transcriptional repressor Blimp-1 distinguished T zone 'lymphoid' effector helper T cells (CD62LhiCCR7hi) from CXCR5lo 'emigrant' effector helper T cells and CXCR5hi 'resident' TFH cells expressing the transcriptional repressor Bcl-6 (CD62LloCCR7lo). We then show by adoptive transfer and intact polyclonal responses that helper T cells with the highest specific binding of peptide–major histocompatibility complex class II and the most restricted T cell antigen receptor junctional diversity 'preferentially' developed into the antigen-specific effector TFH compartment. Our studies demonstrate a central function for differences in the binding strength of the T cell antigen receptor in the antigen-specific mechanisms that 'program' specialized effector TFH function in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Three subsets of antigen-specific effector helper T cells emerge in draining lymph nodes.
Figure 2: Lymphoid effector helper T cells express Blimp-1.
Figure 3: 'Resident' effector TFH cells express Bcl-6.
Figure 4: Precursors with high-affinity TCR 'preferentially' develop into 'resident' TFH cells.
Figure 5: 'Resident' TFH cells have stronger pMHCII binding than do other effector helper T cells.
Figure 6: 'Resident' TFH cells express a more restricted TCR repertoire than do other effector helper T cells.
Figure 7: 'Resident' TFH cells 'preferentially' develop after priming with adjuvants that promote high-affinity antigen-specific helper T cells.

Similar content being viewed by others

Change history

  • 08 March 2009

    NOTE: In the version of this article initially published online, CD62L is identified incorrectly as a chemokine. The correct definition should be 'L-selectin'. The error has been corrected for the print, PDF and HTML versions of this article.

References

  1. Fazilleau, N., McHeyzer-Williams, L.J. & McHeyzer-Williams,, M.G. Local development of effector and memory T helper cells. Curr. Opin. Immunol. 19, 259–267 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. McHeyzer-Williams, L.J. & McHeyzer-Williams, M.G. Antigen-specific memory B cell development. Annu. Rev. Immunol. 23, 487–513 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. King, C., Tangye, S.G. & Mackay, C.R. T follicular helper (TFH) cells in normal and dysregulated immune responses. Annu. Rev. Immunol. 26, 741–766 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Vinuesa, C.G., Tangye, S.G., Moser, B. & Mackay, C.R. Follicular B helper T cells in antibody responses and autoimmunity. Nat. Rev. Immunol. 5, 853–865 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Breitfeld, D. et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J. Exp. Med. 192, 1545–1552 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kim, C.H. et al. Subspecialization of CXCR5+ T cells: B helper activity is focused in a germinal center-localized subset of CXCR5+ T cells. J. Exp. Med. 193, 1373–1381 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ansel, K.M., McHeyzer-Williams, L.J., Ngo, V.N., McHeyzer-Williams, M.G. & Cyster, J.G. In vivo-activated CD4 T cells upregulate CXC chemokine receptor 5 and reprogram their response to lymphoid chemokines. J. Exp. Med. 190, 1123–1134 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Campbell, D.J., Kim, C.H. & Butcher, E.C. Separable effector T cell populations specialized for B cell help or tissue inflammation. Nat. Immunol. 2, 876–881 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Quezada, S.A., Jarvinen, L.Z., Lind, E.F. & Noelle, R.J. CD40/CD154 interactions at the interface of tolerance and immunity. Annu. Rev. Immunol. 22, 307–328 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Mak, T.W. et al. Costimulation through the inducible costimulator ligand is essential for both T helper and B cell functions in T cell–dependent B cell responses. Nat. Immunol. 4, 765–772 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Vinuesa, C.G. et al. A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature 435, 452–458 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Snapper, C.M. & Paul, W.E. Interferon-γ and B cell stimulatory factor-1 reciprocally regulate Ig isotype production. Science 236, 944–947 (1987).

    Article  CAS  PubMed  Google Scholar 

  13. Chtanova, T. et al. T follicular helper cells express a distinctive transcriptional profile, reflecting their role as non-Th1/Th2 effector cells that provide help for B cells. J. Immunol. 173, 68–78 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Fazilleau, N. et al. Lymphoid reservoirs of antigen-specific memory T helper cells. Nat. Immunol. 8, 753–761 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Nurieva, R.I. et al. Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity 29, 138–149 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vogelzang, A. et al. A fundamental role for interleukin-21 in the generation of T follicular helper cells. Immunity 29, 127–137 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Qi, H., Cannons, J.L., Klauschen, F., Schwartzberg, P.L. & Germain, R.N. SAP-controlled T-B cell interactions underlie germinal center formation. Nature 455, 764–769 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gett, A.V., Sallusto, F., Lanzavecchia, A. & Geginat, J. T cell fitness determined by signal strength. Nat. Immunol. 4, 355–360 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Iezzi, G., Karjalainen, K. & Lanzavecchia, A. The duration of antigenic stimulation determines the fate of naive and effector T cells. Immunity 8, 89–95 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Fasso, M. et al. T cell receptor (TCR)-mediated repertoire selection and loss of TCR Vb diversity during the initiation of a CD4+ T cell response in vivo. J. Exp. Med. 192, 1719–1730 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Malherbe, L. et al. Selective activation and expansion of high-affinity CD4+ T cells in resistant mice upon infection with Leishmania major. Immunity 13, 771–782 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Savage, P.A., Boniface, J.J. & Davis, M.M. A kinetic basis for T cell receptor repertoire selection during an immune response. Immunity 10, 485–492 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Seder, R.A., Paul, W.E., Davis, M.M. & Fazekas de St Groth, B. The presence of interleukin 4 during in vitro priming determines the lymphokine-producing potential of CD4+ T cells from T cell receptor transgenic mice. J. Exp. Med. 176, 1091–1098 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Blander, J.M., Sant'Angelo, D.B., Bottomly, K. & Janeway, C.A. Jr. Alteration at a single amino acid residue in the T cell receptor α chain complementarity determining region 2 changes the differentiation of naive CD4 T cells in response to antigen from T helper cell type 1 (Th1) to Th2. J. Exp. Med. 191, 2065–2074 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Constant, S., Pfeiffer, C., Woodard, A., Pasqualini, T. & Bottomly, K. Extent of T cell receptor ligation can determine the functional differentiation of naive CD4+ T cells. J. Exp. Med. 182, 1591–1596 (1995).

    Article  CAS  PubMed  Google Scholar 

  26. McHeyzer-Williams, L.J., Panus, J.F., Mikszta, J.A. & McHeyzer-Williams, M.G. Evolution of antigen-specific T cell receptors in vivo: preimmune and antigen-driven selection of preferred complementarity-determining region 3 (CDR3) motifs. J. Exp. Med. 189, 1823–1838 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. McHeyzer-Williams, M.G. & Davis, M.M. Antigen-specific development of primary and memory T cells in vivo. Science 268, 106–111 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Malherbe, L., Hausl, C., Teyton, L. & McHeyzer-Williams, M.G. Clonal selection of helper T cells is determined by an affinity threshold with no further skewing of TCR binding properties. Immunity 21, 669–679 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Malherbe, L., Mark, L., Fazilleau, N., McHeyzer-Williams, L.J. & McHeyzer-Williams, M.G. Vaccine adjuvants alter TCR-based selection thresholds. Immunity 28, 698–709 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Panus, J.F., McHeyzer-Williams, L.J. & McHeyzer-Williams, M.G. Antigen-specific T helper cell function: differential cytokine expression in primary and memory responses. J. Exp. Med. 192, 1301–1316 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bikah, G., Pogue-Caley, R.R., McHeyzer-Williams, L.J. & McHeyzer-Williams, M.G. Regulating T helper cell immunity through antigen responsiveness and calcium entry. Nat. Immunol. 1, 402–412 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Mandala, S. et al. Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science 296, 346–349 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Wei, S.H. et al. Sphingosine 1-phosphate type 1 receptor agonism inhibits transendothelial migration of medullary T cells to lymphatic sinuses. Nat. Immunol. 6, 1228–1235 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Haynes, N.M. et al. Role of CXCR5 and CCR7 in follicular Th cell positioning and appearance of a programmed cell death gene-1high germinal center-associated subpopulation. J. Immunol. 179, 5099–5108 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Obst, R., van Santen, H.M., Mathis, D. & Benoist, C. Antigen persistence is required throughout the expansion phase of a CD4+ T cell response. J. Exp. Med. 201, 1555–1565 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Celli, S., Garcia, Z. & Bousso, P. CD4 T cells integrate signals delivered during successive DC encounters in vivo. J. Exp. Med. 202, 1271–1278 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Odegard, J.M. et al. ICOS-dependent extrafollicular helper T cells elicit IgG production via IL-21 in systemic autoimmunity. J. Exp. Med. 205, 2873–2886 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sallusto, F., Geginat, J. & Lanzavecchia, A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu. Rev. Immunol. 22, 745–763 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Szabo, S.J., Sullivan, B.M., Peng, S.L. & Glimcher, L.H. Molecular mechanisms regulating Th1 immune responses. Annu. Rev. Immunol. 21, 713–758 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Bauquet, A.T. et al. The costimulatory molecule ICOS regulates the expression of c-Maf and IL-21 in the development of follicular T helper cells and TH-17 cells. Nat. Immunol. 10, 167–175 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Shapiro-Shelef, M. et al. Blimp-1 is required for the formation of immunoglobulin secreting plasma cells and pre-plasma memory B cells. Immunity 19, 607–620 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Turner, C.A. Jr., Mack, D.H. & Davis, M.M. Blimp-1, a novel zinc finger-containing protein that can drive the maturation of B lymphocytes into immunoglobulin-secreting cells. Cell 77, 297–306 (1994).

    Article  CAS  PubMed  Google Scholar 

  43. Martins, G.A. et al. Transcriptional repressor Blimp-1 regulates T cell homeostasis and function. Nat. Immunol. 7, 457–465 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Martins, G. & Calame, K. Regulation and functions of Blimp-1 in T and B lymphocytes. Annu. Rev. Immunol. 26, 133–169 (2008).

    Article  CAS  PubMed  Google Scholar 

  45. Dent, A.L., Shaffer, A.L., Yu, X., Allman, D. & Staudt, L.M. Control of inflammation, cytokine expression, and germinal center formation by BCL-6. Science 276, 589–592 (1997).

    Article  CAS  PubMed  Google Scholar 

  46. Cimmino, L. et al. Blimp-1 attenuates Th1 differentiation by repression of ifng, tbx21, and bcl6 gene expression. J. Immunol. 181, 2338–2347 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Williams, M.A., Ravkov, E.V. & Bevan, M.J. Rapid culling of the CD4+ T cell repertoire in the transition from effector to memory. Immunity 28, 533–545 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Celli, S., Lemaitre, F. & Bousso, P. Real-time manipulation of T cell-dendritic cell interactions in vivo reveals the importance of prolonged contacts for CD4+ T cell activation. Immunity 27, 625–634 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Henrickson, S.E. et al. T cell sensing of antigen dose governs interactive behavior with dendritic cells and sets a threshold for T cell activation. Nat. Immunol. 9, 282–291 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Supported by the National Institutes of Health (AI047231, AI040215 and AI059475 to M.G.M.-W.). This is manuscript 19762 from The Scripps Research Institute.

Author information

Authors and Affiliations

Authors

Contributions

N.F., L.J.M.-W. and M.G.M.-W. designed experiments; N.F. did experiments and analyzed data; N.F., L.J.M.-W. and M.G.M.-W. wrote the manuscript; and H.R. consulted on AAL-R experiments and provided necessary reagents.

Corresponding author

Correspondence to Michael G McHeyzer-Williams.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–15 and Supplementary Table 1 (PDF 2424 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fazilleau, N., McHeyzer-Williams, L., Rosen, H. et al. The function of follicular helper T cells is regulated by the strength of T cell antigen receptor binding. Nat Immunol 10, 375–384 (2009). https://doi.org/10.1038/ni.1704

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1704

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing