Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Integration of cytokine and heterologous receptor signaling pathways

A Corrigendum to this article was published on 01 June 2009

This article has been updated

Abstract

Cytokines are soluble mediators of cell communication that are critical in immune regulation. They induce specific gene-expression programs in responsive cells. Recent findings, however, indicate that cytokine receptors can regulate immune cell functions by transcription-independent mechanisms. Here we review the current understanding of how cytokine signaling regulates the functions of other signaling pathways by first discussing the 'traditional' transcription-mediated consequences of cytokine signaling and then providing a detailed description of transcription-independent lateral communications between cytokine receptors and other cellular receptors.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Classical and alternative view of cytokine-mediated regulation of cell functions.
Figure 2: Proposed models for triggering of tyrosine kinase–associated receptors.
Figure 3: Some predicted cytokine–heterologous receptor cross-talk points.

Similar content being viewed by others

Change history

  • 18 May 2009

    NOTE: In the version of this article initially published, the second funding attribution in Acknowledgments is incorrect. The correct attribution is as follows: “Supported by Howard Hughes Medical Institute (J.S.B. and R.M.) and Damon Runyon Cancer Research Foundation (J.S.B).” The error has been corrected in the HTML and PDF versions of the article.

References

  1. Murray, P.J. The JAK-STAT signaling pathway: input and output integration. J. Immunol. 178, 2623–2629 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Nathan, C. & Sporn, M. Cytokines in context. J. Cell Biol. 113, 981–986 (1991).

    Article  CAS  PubMed  Google Scholar 

  3. Haan, C., Kreis, S., Margue, C. & Behrmann, I. Jaks and cytokine receptors—an intimate relationship. Biochem. Pharmacol. 72, 1538–1546 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Firmbach-Kraft, I., Byers, M., Shows, T., Dalla-Favera, R. & Krolewski, J.J. tyk2, prototype of a novel class of non-receptor tyrosine kinase genes. Oncogene 5, 1329–1336 (1990).

    CAS  PubMed  Google Scholar 

  5. Ihle, J.N. The Janus protein tyrosine kinase family and its role in cytokine signaling. Adv. Immunol. 60, 1–35 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Harpur, A.G., Andres, A.C., Ziemiecki, A., Aston, R.R. & Wilks, A.F. JAK2, a third member of the JAK family of protein tyrosine kinases. Oncogene 7, 1347–1353 (1992).

    CAS  PubMed  Google Scholar 

  7. Wilks, A.F. Cloning members of protein-tyrosine kinase family using polymerase chain reaction. Methods Enzymol. 200, 533–546 (1991).

    Article  CAS  PubMed  Google Scholar 

  8. Kishimoto, T., Taga, T. & Akira, S. Cytokine signal transduction. Cell 76, 253–262 (1994).

    Article  CAS  PubMed  Google Scholar 

  9. Gadina, M. et al. Signaling by type I and II cytokine receptors: ten years after. Curr. Opin. Immunol. 13, 363–373 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Leonard, W.J. & O'Shea, J.J. Jaks and STATs: biological implications. Annu. Rev. Immunol. 16, 293–322 (1998).

    Article  CAS  PubMed  Google Scholar 

  11. O'Shea, J.J., Gadina, M. & Schreiber, R.D. Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. Cell 109 (suppl.), S121–S131 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Ihle, J.N., Witthuhn, B.A., Quelle, F.W., Yamamoto, K. & Silvennoinen, O. Signaling through the hematopoietic cytokine receptors. Annu. Rev. Immunol. 13, 369–398 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Takeda, K. & Akira, S. STAT family of transcription factors in cytokine-mediated biological responses. Cytokine Growth Factor Rev. 11, 199–207 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Gil, M.P. et al. Biologic consequences of Stat1-independent IFN signaling. Proc. Natl. Acad. Sci. USA 98, 6680–6685 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ramana, C.V., Gil, M.P., Schreiber, R.D. & Stark, G.R. Stat1-dependent and -independent pathways in IFN-γ-dependent signaling. Trends Immunol. 23, 96–101 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Qing, Y. & Stark, G.R. Alternative activation of STAT1 and STAT3 in response to interferon-γ. J. Biol. Chem. 279, 41679–41685 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Costa-Pereira, A.P. et al. Mutational switch of an IL-6 response to an interferon-γ-like response. Proc. Natl. Acad. Sci. USA 99, 8043–8047 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Horng, T., Bezbradica, J.S. & Medzhitov, R. NKG2D signaling is coupled to the interleukin 15 receptor signaling pathway. Nat. Immunol. 8, 1345–1352 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Tassiulas, I. et al. Amplification of IFN-α-induced STAT1 activation and inflammatory function by Syk and ITAM-containing adaptors. Nat. Immunol. 5, 1181–1189 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Schroder, K., Sweet, M.J. & Hume, D.A. Signal integration between IFNγ and TLR signalling pathways in macrophages. Immunobiology 211, 511–524 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Bosisio, D. et al. Stimulation of toll-like receptor 4 expression in human mononuclear phagocytes by interferon-γ: a molecular basis for priming and synergism with bacterial lipopolysaccharide. Blood 99, 3427–3431 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Guyre, P.M., Morganelli, P.M. & Miller, R. Recombinant immune interferon increases immunoglobulin G Fc receptors on cultured human mononuclear phagocytes. J. Clin. Invest. 72, 393–397 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nimmerjahn, F., Bruhns, P., Horiuchi, K. & Ravetch, J.V. FcγRIV: a novel FcR with distinct IgG subclass specificity. Immunity 23, 41–51 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Okayama, Y., Kirshenbaum, A.S. & Metcalfe, D.D. Expression of a functional high-affinity IgG receptor, FcγRI, on human mast cells: up-regulation by IFN-γ. J. Immunol. 164, 4332–4339 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Pricop, L. et al. Differential modulation of stimulatory and inhibitory Fcγ receptors on human monocytes by Th1 and Th2 cytokines. J. Immunol. 166, 531–537 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Meresse, B. et al. Coordinated induction by IL15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease. Immunity 21, 357–366 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Lucas, M., Schachterle, W., Oberle, K., Aichele, P. & Diefenbach, A. Dendritic cells prime natural killer cells by trans-presenting interleukin 15. Immunity 26, 503–517 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Imada, K. et al. Stat5b is essential for natural killer cell-mediated proliferation and cytolytic activity. J. Exp. Med. 188, 2067–2074 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Minagawa, M. et al. Enforced expression of Bcl-2 restores the number of NK cells, but does not rescue the impaired development of NKT cells or intraepithelial lymphocytes, in IL-2/IL-15 receptor β-chain-deficient mice. J. Immunol. 169, 4153–4160 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Malek, T.R. The biology of interleukin-2. Annu. Rev. Immunol. 26, 453–479 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Liao, W. et al. Priming for T helper type 2 differentiation by interleukin 2–mediated induction of interleukin 4 receptor α-chain expression. Nat. Immunol. 9, 1288–1296 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Afkarian, M. et al. T-bet is a STAT1-induced regulator of IL-12R expression in naive CD4+ T cells. Nat. Immunol. 3, 549–557 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Szabo, S.J., Dighe, A.S., Gubler, U. & Murphy, K.M. Regulation of the interleukin (IL)-12R β2 subunit expression in developing T helper 1 (Th1) and Th2 cells. J. Exp. Med. 185, 817–824 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Veldhoen, M., Hocking, R.J., Atkins, C.J., Locksley, R.M. & Stockinger, B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189 (2006).

    Article  CAS  PubMed  Google Scholar 

  35. Ivanov, I.I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. McGeachy, M.J. & Cua, D.J. Th17 cell differentiation: the long and winding road. Immunity 28, 445–453 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Schindler, U., Wu, P., Rothe, M., Brasseur, M. & McKnight, S.L. Components of a Stat recognition code: evidence for two layers of molecular selectivity. Immunity 2, 689–697 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Horvath, C.M., Wen, Z. & Darnell, J.E. Jr. A STAT protein domain that determines DNA sequence recognition suggests a novel DNA-binding domain. Genes Dev. 9, 984–994 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Schroder, K., Hertzog, P.J., Ravasi, T. & Hume, D.A. Interferon-γ: an overview of signals, mechanisms and functions. J. Leukoc. Biol. 75, 163–189 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Zhang, X., Wrzeszczynska, M.H., Horvath, C.M. & Darnell, J.E. Jr. Interacting regions in Stat3 and c-Jun that participate in cooperative transcriptional activation. Mol. Cell. Biol. 19, 7138–7146 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Shi, M., Lin, T.H., Appell, K.C. & Berg, L.J. Janus-kinase-3-dependent signals induce chromatin remodeling at the Ifng locus during T helper 1 cell differentiation. Immunity 28, 763–773 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhu, J., Cote-Sierra, J., Guo, L. & Paul, W.E. Stat5 activation plays a critical role in Th2 differentiation. Immunity 19, 739–748 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Kim, S.T., Fields, P.E. & Flavell, R.A. Demethylation of a specific hypersensitive site in the Th2 locus control region. Proc. Natl. Acad. Sci. USA 104, 17052–17057 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pasare, C. & Medzhitov, R. Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 299, 1033–1036 (2003).

    Article  CAS  PubMed  Google Scholar 

  45. Hu, X. et al. IFN-γ suppresses IL-10 production and synergizes with TLR2 by regulating GSK3 and CREB/AP-1 proteins. Immunity 24, 563–574 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Alexander, W.S. & Hilton, D.J. The role of suppressors of cytokine signaling (SOCS) proteins in regulation of the immune response. Annu. Rev. Immunol. 22, 503–529 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Yoshimura, A., Naka, T. & Kubo, M. SOCS proteins, cytokine signalling and immune regulation. Nat. Rev. Immunol. 7, 454–465 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Nakagawa, R. et al. SOCS-1 participates in negative regulation of LPS responses. Immunity 17, 677–687 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Mansell, A. et al. Suppressor of cytokine signaling 1 negatively regulates Toll-like receptor signaling by mediating Mal degradation. Nat. Immunol. 7, 148–155 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Ryo, A. et al. Regulation of NF-κB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA. Mol. Cell 12, 1413–1426 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Rothlin, C.V., Ghosh, S., Zuniga, E.I., Oldstone, M.B. & Lemke, G. TAM receptors are pleiotropic inhibitors of the innate immune response. Cell 131, 1124–1136 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Nelms, K., Keegan, A.D., Zamorano, J., Ryan, J.J. & Paul, W.E. The IL-4 receptor: signaling mechanisms and biologic functions. Annu. Rev. Immunol. 17, 701–738 (1999).

    Article  CAS  PubMed  Google Scholar 

  53. Keegan, A.D. et al. An IL-4 receptor region containing an insulin receptor motif is important for IL-4-mediated IRS-1 phosphorylation and cell growth. Cell 76, 811–820 (1994).

    Article  CAS  PubMed  Google Scholar 

  54. Sun, X.J. et al. Role of IRS-2 in insulin and cytokine signalling. Nature 377, 173–177 (1995).

    Article  CAS  PubMed  Google Scholar 

  55. Aronica, M.A., Goenka, S. & Boothby, M. IL-4-dependent induction of BCL-2 and BCL-X(L)IN activated T lymphocytes through a STAT6- and pi 3-kinase-independent pathway. Cytokine 12, 578–587 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Gadina, M. et al. The docking molecule gab2 is induced by lymphocyte activation and is involved in signaling by interleukin-2 and interleukin-15 but not other common γ chain-using cytokines. J. Biol. Chem. 275, 26959–26966 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Gadina, M., Stancato, L.M., Bacon, C.M., Larner, A.C. & O'Shea, J.J. Involvement of SHP-2 in multiple aspects of IL-2 signaling: evidence for a positive regulatory role. J. Immunol. 160, 4657–4661 (1998).

    CAS  PubMed  Google Scholar 

  58. Walsh, P.T. et al. PTEN inhibits IL-2 receptor–mediated expansion of CD4+ CD25+ Tregs. J. Clin. Invest. 116, 2521–2531 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Bensinger, S.J. et al. Distinct IL-2 receptor signaling pattern in CD4+CD25+ regulatory T cells. J. Immunol. 172, 5287–5296 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Johnston, J.A. et al. Tyrosine phosphorylation and activation of STAT5, STAT3, and Janus kinases by interleukins 2 and 15. Proc. Natl. Acad. Sci. USA 92, 8705–8709 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Budagian, V., Bulanova, E., Paus, R. & Bulfone-Paus, S. IL-15/IL-15 receptor biology: a guided tour through an expanding universe. Cytokine Growth Factor Rev. 17, 259–280 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Bulanova, E. et al. The IL-15Rα chain signals through association with Syk in human B cells. J. Immunol. 167, 6292–6302 (2001).

    Article  CAS  PubMed  Google Scholar 

  63. McDonald, P.P., Russo, M.P., Ferrini, S. & Cassatella, M.A. Interleukin-15 (IL-15) induces NF-κB activation and IL-8 production in human neutrophils. Blood 92, 4828–4835 (1998).

    Article  CAS  PubMed  Google Scholar 

  64. Ratthe, C. & Girard, D. Interleukin-15 enhances human neutrophil phagocytosis by a Syk-dependent mechanism: importance of the IL-15Rα chain. J. Leukoc. Biol. 76, 162–168 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Gu, H. et al. New role for Shc in activation of the phosphatidylinositol 3-kinase/Akt pathway. Mol. Cell. Biol. 20, 7109–7120 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bulanova, E. et al. Mast cells express novel functional IL-15 receptor α isoforms. J. Immunol. 170, 5045–5055 (2003).

    Article  CAS  PubMed  Google Scholar 

  67. Budagian, V. et al. A promiscuous liaison between IL-15 receptor and Axl receptor tyrosine kinase in cell death control. EMBO J. 24, 4260–4270 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tangye, S.G., Phillips, J.H. & Lanier, L.L. The CD2-subset of the Ig superfamily of cell surface molecules: receptor-ligand pairs expressed by NK cells and other immune cells. Semin. Immunol. 12, 149–157 (2000).

    Article  CAS  PubMed  Google Scholar 

  69. Maldonado, R.A., Irvine, D.J., Schreiber, R. & Glimcher, L.H. A role for the immunological synapse in lineage commitment of CD4 lymphocytes. Nature 431, 527–532 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Chang, J.T. et al. Asymmetric T lymphocyte division in the initiation of adaptive immune responses. Science 315, 1687–1691 (2007).

    Article  CAS  PubMed  Google Scholar 

  71. Kondadasula, S.V. et al. Colocalization of the IL-12 receptor and FcγRIIIa to natural killer cell lipid rafts leads to activation of ERK and enhanced production of interferon-γ. Blood 111, 4173–4183 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Takaoka, A. et al. Cross talk between interferon-γ and -α/β signaling components in caveolar membrane domains. Science 288, 2357–2360 (2000).

    Article  CAS  PubMed  Google Scholar 

  73. Mitani, Y. et al. Cross talk of the interferon-α/β signalling complex with gp130 for effective interleukin-6 signalling. Genes Cells 6, 631–640 (2001).

    Article  CAS  PubMed  Google Scholar 

  74. Hu, X. et al. Sensitization of IFN-γ Jak-STAT signaling during macrophage activation. Nat. Immunol. 3, 859–866 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Mizukoshi, E. et al. Upregulation of type I interferon receptor by IFN-gamma. J. Interferon Cytokine Res. 19, 1019–1023 (1999).

    Article  CAS  PubMed  Google Scholar 

  76. Wang, L. et al. 'Tuning' of type I interferon-induced Jak-STAT1 signaling by calcium-dependent kinases in macrophages. Nat. Immunol. 9, 186–193 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Kovarik, P., Stoiber, D., Novy, M. & Decker, T. Stat1 combines signals derived from IFN-γ and LPS receptors during macrophage activation. EMBO J. 17, 3660–3668 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kovarik, P. et al. Specificity of signaling by STAT1 depends on SH2 and C-terminal domains that regulate Ser727 phosphorylation, differentially affecting specific target gene expression. EMBO J. 20, 91–100 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Visconti, R. et al. Importance of the MKK6/p38 pathway for interleukin-12-induced STAT4 serine phosphorylation and transcriptional activity. Blood 96, 1844–1852 (2000).

    Article  CAS  PubMed  Google Scholar 

  80. Nair, J.S. et al. Requirement of Ca2+ and CaMKII for Stat1 Ser-727 phosphorylation in response to IFN-γ. Proc. Natl. Acad. Sci. USA 99, 5971–5976 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Decker, T. & Kovarik, P. Serine phosphorylation of STATs. Oncogene 19, 2628–2637 (2000).

    Article  CAS  PubMed  Google Scholar 

  82. Kovarik, P. et al. Stress-induced phosphorylation of STAT1 at Ser727 requires p38 mitogen-activated protein kinase whereas IFN-γ uses a different signaling pathway. Proc. Natl. Acad. Sci. USA 96, 13956–13961 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Boekhoudt, G.H., Frazier-Jessen, M.R. & Feldman, G.M. Immune complexes suppress IFN-γ signaling by activation of the FcγRI pathway. J. Leukoc. Biol. 81, 1086–1092 (2007).

    Article  CAS  PubMed  Google Scholar 

  84. Feldman, G.M., Chuang, E.J. & Finbloom, D.S. IgG immune complexes inhibit IFN-gamma-induced transcription of the Fc gamma RI gene in human monocytes by preventing the tyrosine phosphorylation of the p91 (Stat1) transcription factor. J. Immunol. 154, 318–325 (1995).

    CAS  PubMed  Google Scholar 

  85. Du, Z. et al. Inhibition of IFN-α signaling by a PKC- and protein tyrosine phosphatase SHP-2-dependent pathway. Proc. Natl. Acad. Sci. USA 102, 10267–10272 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bode, J.G. et al. LPS and TNFα induce SOCS3 mRNA and inhibit IL-6-induced activation of STAT3 in macrophages. FEBS Lett. 463, 365–370 (1999).

    Article  CAS  PubMed  Google Scholar 

  87. Bode, J.G. et al. TNF-α induces tyrosine phosphorylation and recruitment of the Src homology protein-tyrosine phosphatase 2 to the gp130 signal-transducing subunit of the IL-6 receptor complex. J. Immunol. 171, 257–266 (2003).

    Article  CAS  PubMed  Google Scholar 

  88. Kiu, H. et al. Mechanism of crosstalk inhibition of IL-6 signaling in response to LPS and TNFα. Growth Factors 25, 319–328 (2007).

    Article  CAS  PubMed  Google Scholar 

  89. Zhu, J. et al. Transient inhibition of interleukin 4 signaling by T cell receptor ligation. J. Exp. Med. 192, 1125–1134 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Ivashkiv, L.B. A signal-switch hypothesis for cross-regulation of cytokine and TLR signalling pathways. Nat. Rev. Immunol. 8, 816–822 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Brilot, F., Strowig, T., Roberts, S.M., Arrey, F. & Munz, C. NK cell survival mediated through the regulatory synapse with human DCs requires IL-15Rα. J. Clin. Invest. 117, 3316–3329 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Vamosi, G. et al. IL-2 and IL-15 receptor α-subunits are coexpressed in a supramolecular receptor cluster in lipid rafts of T cells. Proc. Natl. Acad. Sci. USA 101, 11082–11087 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Call, M.E., Pyrdol, J., Wiedmann, M. & Wucherpfennig, K.W. The organizing principle in the formation of the T cell receptor-CD3 complex. Cell 111, 967–979 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Feng, J., Call, M.E. & Wucherpfennig, K.W. The assembly of diverse immune receptors is focused on a polar membrane-embedded interaction site. PLoS Biol. 4, e142 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Dylke, J., Lopes, J., Dang-Lawson, M., Machtaler, S. & Matsuuchi, L. Role of the extracellular and transmembrane domain of Ig-α/β in assembly of the B cell antigen receptor (BCR). Immunol. Lett. 112, 47–57 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Stevens, T.L., Blum, J.H., Foy, S.P., Matsuuchi, L. & DeFranco, A.L. A mutation of the mu transmembrane that disrupts endoplasmic reticulum retention. Effects on association with accessory proteins and signal transduction. J. Immunol. 152, 4397–4406 (1994).

    CAS  PubMed  Google Scholar 

  97. Moore, D.T., Berger, B.W. & DeGrado, W.F. Protein-protein interactions in the membrane: sequence, structural, and biological motifs. Structure 16, 991–1001 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Daniels, M.A., Hogquist, K.A. & Jameson, S.C. Sweet 'n' sour: the impact of differential glycosylation on T cell responses. Nat. Immunol. 3, 903–910 (2002).

    Article  CAS  PubMed  Google Scholar 

  99. Rudd, P.M. et al. Roles for glycosylation of cell surface receptors involved in cellular immune recognition. J. Mol. Biol. 293, 351–366 (1999).

    Article  CAS  PubMed  Google Scholar 

  100. Stanley, P. & Cummings, R.D. Structures common to different glycans. in Essentials of Glycobiology 2nd edn. (eds. Varki, A.C. et al.) ch. 13 (Cold Spring Harbor Laboratory Press, Woodbury, New York, USA, 2009).

    Google Scholar 

  101. Gardella, S. et al. CD8+ T lymphocytes induce polarized exocytosis of secretory lysosomes by dendritic cells with release of interleukin-1β and cathepsin D. Blood 98, 2152–2159 (2001).

    Article  CAS  PubMed  Google Scholar 

  102. Semino, C., Angelini, G., Poggi, A. & Rubartelli, A. NK/iDC interaction results in IL-18 secretion by DCs at the synaptic cleft followed by NK cell activation and release of the DC maturation factor HMGB1. Blood 106, 609–616 (2005).

    Article  CAS  PubMed  Google Scholar 

  103. Borg, C. et al. NK cell activation by dendritic cells (DCs) requires the formation of a synapse leading to IL-12 polarization in DCs. Blood 104, 3267–3275 (2004).

    Article  CAS  PubMed  Google Scholar 

  104. Huse, M., Lillemeier, B.F., Kuhns, M.S., Chen, D.S. & Davis, M.M. T cells use two directionally distinct pathways for cytokine secretion. Nat. Immunol. 7, 247–255 (2006).

    Article  CAS  PubMed  Google Scholar 

  105. Kupfer, A., Mosmann, T.R. & Kupfer, H. Polarized expression of cytokines in cell conjugates of helper T cells and splenic B cells. Proc. Natl. Acad. Sci. USA 88, 775–779 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Murray, R.Z., Kay, J.G., Sangermani, D.G. & Stow, J.L. A role for the phagosome in cytokine secretion. Science 310, 1492–1495 (2005).

    Article  CAS  PubMed  Google Scholar 

  107. Holst, J. et al. Scalable signaling mediated by T cell antigen receptor–CD3 ITAMs ensures effective negative selection and prevents autoimmunity. Nat. Immunol. 9, 658–666 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Meylan, E. et al. RIP1 is an essential mediator of Toll-like receptor 3-induced NF-κB activation. Nat. Immunol. 5, 503–507 (2004).

    Article  CAS  PubMed  Google Scholar 

  109. Antoniv, T.T. & Ivashkiv, L.B. Dysregulation of interleukin-10-dependent gene expression in rheumatoid arthritis synovial macrophages. Arthritis Rheum. 54, 2711–2721 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to the many authors whose work we could not cite directly because of space limitations. We thank N. Palm, L. Kopp and I. Brodsky for discussions and reading of the manuscript. Supported by Howard Hughes Medical Institute (J.S.B. and R.M.) and Damon Runyon Cancer Research Foundation (J.S.B.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jelena S Bezbradica or Ruslan Medzhitov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bezbradica, J., Medzhitov, R. Integration of cytokine and heterologous receptor signaling pathways. Nat Immunol 10, 333–339 (2009). https://doi.org/10.1038/ni.1713

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1713

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing