Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Function of C/EBPδ in a regulatory circuit that discriminates between transient and persistent TLR4-induced signals

Abstract

The innate immune system is like a double-edged sword: it is absolutely required for host defense against infection, but when uncontrolled, it can trigger a plethora of inflammatory diseases. Here we use systems-biology approaches to predict and confirm the existence of a gene-regulatory network involving dynamic interaction among the transcription factors NF-κB, C/EBPδ and ATF3 that controls inflammatory responses. We mathematically modeled transcriptional regulation of the genes encoding interleukin 6 and C/EBPδ and experimentally confirmed the prediction that the combination of an initiator (NF-κB), an amplifier (C/EBPδ) and an attenuator (ATF3) forms a regulatory circuit that discriminates between transient and persistent Toll-like receptor 4–induced signals. Our results suggest a mechanism that enables the innate immune system to detect the duration of infection and to respond appropriately.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Prediction and confirmation of the existence of an LPS-induced transcription factor network involving NF-κB, C/EBPδ and ATF3.
Figure 2: Mathematical model characterizing the transcriptional regulation of Il6 in TLR4-stimulated macrophages.
Figure 3: Computational simulations of the transcriptional response of Il6 to TLR4 signals of varying duration identify a threshold effect.
Figure 4: Identification of direct targets of C/EBPδ.
Figure 5: The function of C/EBPδ in the restriction of transient and persistent bacterial infections.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Janeway, C.A. & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Aderem, A. & Ulevitch, R.J. Toll-like receptors in the induction of the innate immune response. Nature 406, 782–787 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Medzhitov, R. Toll-like receptors and innate immunity. Nat. Rev. Immunol. 1, 135–145 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Nathan, C. Points of control in inflammation. Nature 420, 846–852 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Kobayashi, K.S. & Flavell, R.A. Shielding the double-edged sword: negative regulation of the innate immune system. J. Leukoc. Biol. 75, 428–433 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Barnes, P.J. & Karin, M. Nuclear factor-κB: a pivotal transcription factor in chronic inflammatory diseases. N. Engl. J. Med. 336, 1066–1071 (1997).

    Article  CAS  PubMed  Google Scholar 

  7. Bouma, G. & Strober, W. The immunological and genetic basis of inflammatory bowel disease. Nat. Rev. Immunol. 3, 521–533 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Liew, F.Y., Xu, D., Brint, E.K. & O'Neill, L.A.J. Negative regulation of toll-like receptor-mediated immune responses. Nat. Rev. Immunol. 5, 446–458 (2005).

    Article  CAS  PubMed  Google Scholar 

  9. Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783–801 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Kawai, T. & Akira, S. Pathogen recognition with Toll-like receptors. Curr. Opin. Immunol. 17, 338–344 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Royet, J., Reichhart, J.M. & Hoffmann, J.A. Sensing and signaling during infection in Drosophila. Curr. Opin. Immunol. 17, 11–17 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Takeda, K. & Akira, S. TLR signaling pathways. Semin. Immunol. 16, 3–9 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. Jenner, R.G. & Young, R.A. Insights into host responses against pathogens from transcriptional profiling. Nat. Rev. Microbiol. 3, 281–294 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Beutler, B. Tlr4: Central component of the sole mammalian LPS sensor. Curr. Opin. Immunol. 12, 20–26 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Taylor, P.R. et al. Macrophage receptors and immune recognition. Annu. Rev. Immunol. 23, 901–944 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Gordon, S. Alternative activation of macrophages. Nat. Rev. Immunol. 3, 23–35 (2003).

    Article  CAS  PubMed  Google Scholar 

  17. Boldrick, J.C. et al. Stereotyped and specific gene expression programs in human innate immune responses to bacteria. Proc. Natl. Acad. Sci. USA 99, 972–977 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nau, G.J. et al. Human macrophage activation programs induced by bacterial pathogens. Proc. Natl. Acad. Sci. USA 99, 1503–1508 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Roach, J.C. et al. Transcription factor expression in lipopolysaccharide-activated peripheral-blood-derived mononuclear cells. Proc. Natl. Acad. Sci. USA 104, 16245–16250 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Aderem, A. Systems biology: its practice and challenges. Cell 121, 511–513 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Kitano, H. Computational systems biology. Nature 420, 206–210 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Suthram, S., Sittler, T. & Ideker, T. The plasmodium protein network diverges from those of other eukaryotes. Nature 438, 108–112 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ideker, T., Galitski, T. & Hood, L. A new approach to decoding life: Systems biology. Annu. Rev. Genomics Hum. Genet. 2, 343–372 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Aderem, A. & Smith, K.D. A systems approach to dissecting immunity and inflammation. Semin. Immunol. 16, 55–67 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Bolouri, H. & Davidson, E.H. Transcriptional regulatory cascades in development: initial rates, not steady state, determine network kinetics. Proc. Natl. Acad. Sci. USA 100, 9371–9376 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Smith, J., Theodoris, C. & Davidson, E.H. A gene regulatory network subcircuit drives a dynamic pattern of gene expression. Science 318, 794–797 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Gilchrist, M. et al. Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature 441, 173–178 (2006).

    Article  CAS  PubMed  Google Scholar 

  28. Hoffmann, A., Levchenko, A., Scott, M.L. & Baltimore, D. The IκB-NF-κB signaling module: temporal control and selective gene activation. Science 298, 1241–1245 (2002).

    Article  CAS  PubMed  Google Scholar 

  29. Ramsey, S.A. et al. Dual feedback loops in the GAL regulon suppress cellular heterogeneity in yeast. Nat. Genet. 38, 1082–1087 (2006).

    Article  CAS  PubMed  Google Scholar 

  30. Alon, U. Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8, 450–461 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Flo, T.H. et al. Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature 432, 917–921 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Ramsey, S.A. et al. Uncovering a macrophage transcriptional program by integrating evidence from motif scanning and expression dynamics. PLOS Comput. Biol. 4, e1000021 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Li, Q. & Verma, I.M. NF-κB regulation in the immune system. Nat. Rev. Immunol. 2, 725–734 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Lekstrom-Himes, J. & Xanthopoulos, K.G. Biological role of the CCAAT/enhancer-binding protein family of transcription factors. J. Biol. Chem. 273, 28545–28548 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Kovács, K.A., Steinmann, M., Magistretti, P.J., Halfon, O. & Cardinaux, J.R. CCAAT/enhancer-binding protein family members recruit the coactivator CREB-binding protein and trigger its phosphorylation. J. Biol. Chem. 278, 36959–36965 (2003).

    Article  PubMed  Google Scholar 

  36. Johnson, W.E. et al. Model-based analysis of tiling-arrays for ChIP-chip. Proc. Natl. Acad. Sci. USA 103, 12457–12462 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Longabaugh, W.J.R., Davidson, E.H. & Bolouri, H. Computational representation of developmental genetic regulatory networks. Dev. Biol. 283, 1–16 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Gilchrist, E. Gold and C. Rosenberger for discussions and critical reading of the manuscript; and A. Nachman, I. Podolsky, C. Lorang and T. Stolyar for technical assistance. Supported by Irvington Institute Fellowship Program of the Cancer Research Institute (V.L.) and the National Institutes of Health (A.A.).

Author information

Authors and Affiliations

Authors

Contributions

V.L. designed experiments, did all experimental studies and drafted the manuscript; S.A.R. did data analysis and mathematical modeling; A.G.R., D.E.Z. and M.N. did computational analysis; K.A.K. did microarray experiments; A.E.L. provided technical assistance for experiments, including quantitative real-time PCR, ChIP and in vivo studies; I.S. supervised the computational analysis; and A.A. supervised the study and wrote the manuscript.

Corresponding author

Correspondence to Alan Aderem.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5, Supplementary Tables 1–5 and Supplementary Methods (PDF 2004 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Litvak, V., Ramsey, S., Rust, A. et al. Function of C/EBPδ in a regulatory circuit that discriminates between transient and persistent TLR4-induced signals. Nat Immunol 10, 437–443 (2009). https://doi.org/10.1038/ni.1721

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1721

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing