Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Localized diacylglycerol drives the polarization of the microtubule-organizing center in T cells

Abstract

The reorientation of the T cell microtubule-organizing center (MTOC) toward the antigen-presenting cell enables the directional secretion of cytokines and lytic factors. By single-cell photoactivation of the T cell antigen receptor, we show that MTOC polarization is driven by localized accumulation of diacylglycerol (DAG). MTOC reorientation was closely preceded first by production of DAG and then by recruitment of the microtubule motor protein dynein. Blocking DAG production or disrupting the localization of DAG impaired MTOC recruitment. Localized DAG accumulation was also required for cytotoxic T cell–mediated killing. Furthermore, photoactivation of DAG itself was sufficient to induce transient polarization. Our data identify a DAG-dependent pathway that signals through dynein to control microtubule polarity in T cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inhibition of PLC-γ blocks MTOC reorientation in helper T cells.
Figure 2: PMA inhibits MTOC reorientation, but Ca2+ blockade does not.
Figure 3: PMA impairs the maintenance of MTOC polarization, but ionomycin does not.
Figure 4: MTOC reorientation is spatially and temporally linked to the accumulation of DAG and dynein.
Figure 5: Accumulation of DAG and dynein 'predicts' MTOC reorientation.
Figure 6: Inhibition of DGKs disrupts DAG and dynein accumulation and impairs MTOC reorientation.
Figure 7: Localized DAG is sufficient to induce MTOC reorientation.
Figure 8: PMA and DGK II inhibit CTL mediated lysis but do not inhibit degranulation.

Similar content being viewed by others

References

  1. Breart, B., Lemaitre, F., Celli, S. & Bousso, P. Two-photon imaging of intratumoral CD8+ T cell cytotoxic activity during adoptive T cell therapy in mice. J. Clin. Invest. 118, 1390–1397 (2008).

    Article  CAS  Google Scholar 

  2. Butz, E.A. & Bevan, M.J. Massive expansion of antigen-specific CD8+ T cells during an acute virus infection. Immunity 8, 167–175 (1998).

    Article  CAS  Google Scholar 

  3. Murali-Krishna, K. et al. Counting antigen-specific CD8 T cells: a reevaluation of bystander activation during viral infection. Immunity 8, 177–187 (1998).

    Article  CAS  Google Scholar 

  4. Bromley, S.K. et al. The immunological synapse. Annu. Rev. Immunol. 19, 375–396 (2001).

    Article  CAS  Google Scholar 

  5. Huse, M., Lillemeier, B.F., Kuhns, M.S., Chen, D.S. & Davis, M.M. T cells use two directionally distinct pathways for cytokine secretion. Nat. Immunol. 7, 247–255 (2006).

    Article  CAS  Google Scholar 

  6. Kupfer, A., Mosmann, T.R. & Kupfer, H. Polarized expression of cytokines in cell conjugates of helper T cells and splenic B cells. Proc. Natl. Acad. Sci. USA 88, 775–779 (1991).

    Article  CAS  Google Scholar 

  7. Stinchcombe, J.C., Bossi, G., Booth, S. & Griffiths, G.M. The immunological synapse of CTL contains a secretory domain and membrane bridges. Immunity 15, 751–761 (2001).

    Article  CAS  Google Scholar 

  8. Huse, M., Quann, E.J. & Davis, M.M. Shouts, whispers, and the kiss of death: directional secretion in T cells. Nat. Immunol. 9, 1105–1111 (2008).

    Article  CAS  Google Scholar 

  9. Chang, J.T. et al. Asymmetric T lymphocyte division in the initiation of adaptive immune responses. Science 315, 1687–1691 (2007).

    Article  CAS  Google Scholar 

  10. Martin-Cofreces, N.B. et al. MTOC translocation modulates IS formation and controls sustained T cell signaling. J. Cell Biol. 182, 951–962 (2008).

    Article  CAS  Google Scholar 

  11. Depoil, D. et al. Immunological synapses are versatile structures enabling selective T cell polarization. Immunity 22, 185–194 (2005).

    Article  CAS  Google Scholar 

  12. Huse, M. et al. Spatial and temporal dynamics of T cell receptor signaling with a photoactivatable agonist. Immunity 27, 76–88 (2007).

    Article  CAS  Google Scholar 

  13. Sedwick, C.E. et al. TCR, LFA-1, and CD28 play unique and complementary roles in signaling T cell cytoskeletal reorganization. J. Immunol. 162, 1367–1375 (1999).

    CAS  PubMed  Google Scholar 

  14. Koretzky, G.A., Abtahian, F. & Silverman, M.A. SLP76 and SLP65: complex regulation of signalling in lymphocytes and beyond. Nat. Rev. Immunol. 6, 67–78 (2006).

    Article  CAS  Google Scholar 

  15. Sommers, C.L., Samelson, L.E. & Love, P.E. LAT: a T lymphocyte adapter protein that couples the antigen receptor to downstream signaling pathways. Bioessays 26, 61–67 (2004).

    Article  CAS  Google Scholar 

  16. Kuhne, M.R. et al. Linker for activation of T cells, ζ-associated protein-70, and Src homology 2 domain-containing leukocyte protein-76 are required for TCR-induced microtubule-organizing center polarization. J. Immunol. 171, 860–866 (2003).

    Article  CAS  Google Scholar 

  17. Lowin-Kropf, B., Shapiro, V.S. & Weiss, A. Cytoskeletal polarization of T cells is regulated by an immunoreceptor tyrosine-based activation motif-dependent mechanism. J. Cell Biol. 140, 861–871 (1998).

    Article  CAS  Google Scholar 

  18. Spitaler, M., Emslie, E., Wood, C.D. & Cantrell, D. Diacylglycerol and protein kinase D localization during T lymphocyte activation. Immunity 24, 535–546 (2006).

    Article  CAS  Google Scholar 

  19. Combs, J. et al. Recruitment of dynein to the Jurkat immunological synapse. Proc. Natl. Acad. Sci. USA 103, 14883–14888 (2006).

    Article  CAS  Google Scholar 

  20. Zhong, X.P., Guo, R., Zhou, H., Liu, C. & Wan, C.K. Diacylglycerol kinases in immune cell function and self-tolerance. Immunol. Rev. 224, 249–264 (2008).

    Article  CAS  Google Scholar 

  21. Huang, X.P., Sreekumar, R., Patel, J.R. & Walker, J.W. Response of cardiac myocytes to a ramp increase of diacylglycerol generated by photolysis of a novel caged diacylglycerol. Biophys. J. 70, 2448–2457 (1996).

    Article  CAS  Google Scholar 

  22. Suzuki, A.Z. et al. Coumarin-4-ylmethoxycarbonyls as phototriggers for alcohols and phenols. Org. Lett. 5, 4867–4870 (2003).

    Article  CAS  Google Scholar 

  23. Bunnell, S.C., Kapoor, V., Trible, R.P., Zhang, W. & Samelson, L.E. Dynamic actin polymerization drives T cell receptor-induced spreading: a role for the signal transduction adaptor LAT. Immunity 14, 315–329 (2001).

    Article  CAS  Google Scholar 

  24. Negulescu, P.A., Krasieva, T.B., Khan, A., Kerschbaum, H.H. & Cahalan, M.D. Polarity of T cell shape, motility, and sensitivity to antigen. Immunity 4, 421–430 (1996).

    Article  CAS  Google Scholar 

  25. Jones, G.A. & Carpenter, G. The regulation of phospholipase C-gamma 1 by phosphatidic acid. Assessment of kinetic parameters. J. Biol. Chem. 268, 20845–20850 (1993).

    CAS  PubMed  Google Scholar 

  26. Baier, G. The PKC gene module: molecular biosystematics to resolve its T cell functions. Immunol. Rev. 192, 64–79 (2003).

    Article  CAS  Google Scholar 

  27. Irie, A. et al. Protein kinase D2 contributes to either IL-2 promoter regulation or induction of cell death upon TCR stimulation depending on its activity in Jurkat cells. Int. Immunol. 18, 1737–1747 (2006).

    Article  CAS  Google Scholar 

  28. Ebinu, J.O. et al. RasGRP links T-cell receptor signaling to Ras. Blood 95, 3199–3203 (2000).

    CAS  PubMed  Google Scholar 

  29. Caloca, M.J., Delgado, P., Alarcon, B. & Bustelo, X.R. Role of chimaerins, a group of Rac-specific GTPase activating proteins, in T-cell receptor signaling. Cell. Signal. 20, 758–770 (2008).

    Article  CAS  Google Scholar 

  30. Resnick, M.S. et al. Differential downstream functions of protein kinase Cη and -θ in EL4 mouse thymoma cells. J. Biol. Chem. 273, 27654–27661 (1998).

    Article  CAS  Google Scholar 

  31. Siliceo, M. et al. Beta2-chimaerin provides a diacylglycerol-dependent mechanism for regulation of adhesion and chemotaxis of T cells. J. Cell Sci. 119, 141–152 (2006).

    Article  CAS  Google Scholar 

  32. Sims, T.N. et al. Opposing effects of PKCθ and WASp on symmetry breaking and relocation of the immunological synapse. Cell 129, 773–785 (2007).

    Article  CAS  Google Scholar 

  33. Sanjuan, M.A., Jones, D.R., Izquierdo, M. & Merida, I. Role of diacylglycerol kinase α in the attenuation of receptor signaling. J. Cell Biol. 153, 207–220 (2001).

    Article  CAS  Google Scholar 

  34. Etienne-Manneville, S. & Hall, A. Cell polarity: Par6, aPKC and cytoskeletal crosstalk. Curr. Opin. Cell Biol. 15, 67–72 (2003).

    Article  CAS  Google Scholar 

  35. Manneville, J.B. & Etienne-Manneville, S. Positioning centrosomes and spindle poles: looking at the periphery to find the centre. Biol. Cell 98, 557–565 (2006).

    Article  CAS  Google Scholar 

  36. Li, R. & Gundersen, G.G. Beyond polymer polarity: how the cytoskeleton builds a polarized cell. Nat. Rev. Mol. Cell Biol. 9, 860–873 (2008).

    Article  CAS  Google Scholar 

  37. Real, E., Faure, S., Donnadieu, E. & Delon, J. Cutting edge: atypical PKCs regulate T lymphocyte polarity and scanning behavior. J. Immunol. 179, 5649–5652 (2007).

    Article  CAS  Google Scholar 

  38. Gomez, T.S. et al. Formins regulate the actin-related protein 2/3 complex-independent polarization of the centrosome to the immunological synapse. Immunity 26, 177–190 (2007).

    Article  CAS  Google Scholar 

  39. Stowers, L., Yelon, D., Berg, L.J. & Chant, J. Regulation of the polarization of T cells toward antigen-presenting cells by Ras-related GTPase CDC42. Proc. Natl. Acad. Sci. USA 92, 5027–5031 (1995).

    Article  CAS  Google Scholar 

  40. Devreotes, P. & Janetopoulos, C. Eukaryotic chemotaxis: distinctions between directional sensing and polarization. J. Biol. Chem. 278, 20445–20448 (2003).

    Article  CAS  Google Scholar 

  41. Purbhoo, M.A., Irvine, D.J., Huppa, J.B. & Davis, M.M. T cell killing does not require the formation of a stable mature immunological synapse. Nat. Immunol. 5, 524–530 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Altan-Bonnet (Memorial Sloan-Kettering Cancer Center) and O. Feinerman (Memorial Sloan-Kettering Cancer Center) for assistance with MATLAB programming, RMA-s cells and other reagents; T. Pentcheva-Hoang (Memorial Sloan-Kettering Cancer Center) and J. Allison (Memorial Sloan-Kettering Cancer Center) for CH12 cells and help with imaging experiments; Q. Li (Duke University) for helper T cell cDNA; W. Sha (University of California, Berkeley) and M.S. Kuhns (Stanford University) for pMSCV; R. Tsien (University of California, San Diego) and M.W. Davidson (Florida State University) for Tag-RFP-T; S.S. Yi and the Sloan-Kettering Institute Microchemistry Core Facility for peptide synthesis; D. Sant'Angelo, G. Altan-Bonnet, A. Hall, P. Abeyweera, D.A. Schaer and K. Pham for advice and critical reading of the manuscript; B. Driscoll for technical assistance; the laboratories of M.O. Li and B. Dupont for reagents and comments; and M.M. Davis for advice and support at the start of this project. Supported by the Spanish Ministry of Science and Innovation (E.M.), the Ministry of Education, Culture, Sports, Science and Technology of Japan (T.F.), the Searle Scholars Program (M.H.) and the Cancer Research Institute (M.H.).

Author information

Authors and Affiliations

Authors

Contributions

E.J.Q. and M.H. designed the experiments, collected the data and analyzed the results; E.M. helped develop the DGK studies; T.F. provided caged diC8; and M.H. wrote the manuscript with input from E.J.Q. and E.M.

Corresponding author

Correspondence to Morgan Huse.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–2 and Supplementary Movie Legends (PDF 1035 kb)

Supplementary Movie 1

Inhibition of PLC-γ blocks MTOC reorientation in TH cells. (MOV 1391 kb)

Supplementary Movie 2

The control compound U-73343 does not affect MTOC reorientation. (MOV 2226 kb)

Supplementary Movie 3

PMA inhibits MTOC reorientation. (MOV 2270 kb)

Supplementary Movie 4

Maintenance of MTOC polarization under control conditions. (MOV 756 kb)

Supplementary Movie 5

PMA impairs the maintenance of MTOC polarization. (MOV 525 kb)

Supplementary Movie 6

Ionomycin does not affect the maintenance of MTOC polarization. (MOV 417 kb)

Supplementary Movie 7

DAG accumulation precedes and is spatially correlated with MTOC reorientation. (MOV 216 kb)

Supplementary Movie 8

Dynein accumulation precedes and is spatially correlated with MTOC reorientation. (MOV 2517 kb)

Supplementary Movie 9

DAG accumulation precedes and is spatially correlated with dynein recruitment. (MOV 194 kb)

Supplementary Movie 10

DGK inhibition impairs the stable accumulation of DAG and the polarization of the MTOC. (MOV 2776 kb)

Supplementary Movie 11

DGK inhibition impairs the stable accumulation of dynein and the polarization of the MTOC. (MOV 399 kb)

Supplementary Movie 12

Localized DAG signaling is sufficient to induce transient reorientation of the MTOC. (MOV 3642 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quann, E., Merino, E., Furuta, T. et al. Localized diacylglycerol drives the polarization of the microtubule-organizing center in T cells. Nat Immunol 10, 627–635 (2009). https://doi.org/10.1038/ni.1734

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1734

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing