Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A protective function for interleukin 17A in T cell–mediated intestinal inflammation

Abstract

Interleukin 23 (IL-23) and IL-17 have been linked to the pathogenesis of several chronic inflammatory disorders, including inflammatory bowel disease. Yet as an important function for IL-23 is emerging, the function of IL-17 in inflammatory bowel disease remains unclear. Here we demonstrate IL-17A-mediated protection in the CD45RBhi transfer model of colitis. An accelerated wasting disease elicited by T cells deficient in IL-17A correlated with higher expression of genes encoding T helper type 1–type cytokines in colon tissue. IL-17A also modulated T helper type 1 polarization in vitro. Furthermore, T cells deficient in the IL-17 receptor elicited an accelerated, aggressive wasting disease relative to that elicited by wild-type T cells in recipient mice. Our data demonstrate a protective function for IL-17 and identify T cells as not only the source but also a target of IL-17 in vivo.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IL-17A-deficient CD45RBhi T cells induce an aggressive wasting disease in Rag1−/− recipient mice.
Figure 2: IL-17 modulates TH1 differentiation.
Figure 3: IL-17 suppresses the induction of T-bet in maturing TH1 cells.
Figure 4: Il17ra−/− CD45RBhi donor T cells elicit an accelerated wasting disease in Rag1−/− recipients.

Similar content being viewed by others

References

  1. Langrish, C.L. et al. IL-12 and IL-23: master regulators of innate and adaptive immunity. Immunol. Rev. 202, 96–105 (2004).

    Article  CAS  Google Scholar 

  2. Aggarwal, S., Ghilardi, N., Xie, M.H., de Sauvage, F.J. & Gurney, A.L. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J. Biol. Chem. 278, 1910–1914 (2003).

    Article  CAS  Google Scholar 

  3. Kastelein, R.A., Hunter, C.A. & Cua, D.J. Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation. Annu. Rev. Immunol. 25, 221–242 (2007).

    Article  CAS  Google Scholar 

  4. Oppmann, B. et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13, 715–725 (2000).

    Article  CAS  Google Scholar 

  5. Cua, D.J. et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421, 744–748 (2003).

    Article  CAS  Google Scholar 

  6. Langrish, C.L. et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 201, 233–240 (2005).

    Article  CAS  Google Scholar 

  7. Honorati, M.C. et al. High in vivo expression of interleukin-17 receptor in synovial endothelial cells and chondrocytes from arthritis patients. Rheumatology (Oxford) 40, 522–527 (2001).

    Article  CAS  Google Scholar 

  8. Fossiez, F. et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J. Exp. Med. 183, 2593–2603 (1996).

    Article  CAS  Google Scholar 

  9. Schwarzenberger, P. et al. IL-17 stimulates granulopoiesis in mice: use of an alternate, novel gene therapy-derived method for in vivo evaluation of cytokines. J. Immunol. 161, 6383–6389 (1998).

    CAS  Google Scholar 

  10. Laan, M. et al. Neutrophil recruitment by human IL-17 via C–X-C chemokine release in the airways. J. Immunol. 162, 2347–2352 (1999).

    CAS  PubMed  Google Scholar 

  11. Duerr, R.H. et al. A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314, 1461–1463 (2006).

    Article  CAS  Google Scholar 

  12. Dubinsky, M.C. et al. IL-23 receptor (IL-23R) gene protects against pediatric Crohn's disease. Inflamm. Bowel Dis. 13, 511–515 (2007).

    Article  Google Scholar 

  13. Breese, E., Braegger, C.P., Corrigan, C.J., Walker-Smith, J.A. & MacDonald, T.T. Interleukin-2- and interferon-γ-secreting T cells in normal and diseased human intestinal mucosa. Immunology 78, 127–131 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Fujino, S. et al. Increased expression of interleukin 17 in inflammatory bowel disease. Gut 52, 65–70 (2003).

    Article  CAS  Google Scholar 

  15. Kullberg, M.C. et al. IL-23 plays a key role in Helicobacter hepaticus-induced T cell-dependent colitis. J. Exp. Med. 203, 2485–2494 (2006).

    Article  CAS  Google Scholar 

  16. Yen, D. et al. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J. Clin. Invest. 116, 1310–1316 (2006).

    Article  CAS  Google Scholar 

  17. Hue, S. et al. Interleukin-23 drives innate and T cell-mediated intestinal inflammation. J. Exp. Med. 203, 2473–2483 (2006).

    Article  CAS  Google Scholar 

  18. Powrie, F. et al. Inhibition of Th1 responses prevents inflammatory bowel disease in scid mice reconstituted with CD45RBhi CD4+ T cells. Immunity 1, 553–562 (1994).

    Article  CAS  Google Scholar 

  19. Ito, H. & Fathman, C.G. CD45RBhigh CD4+ T cells from IFN-γ knockout mice do not induce wasting disease. J. Autoimmun. 10, 455–459 (1997).

    Article  CAS  Google Scholar 

  20. Zhang, Z. Critical role of IL-17 receptor signaling in acute TNBS-induced colitis. Inflamm. Bowel Dis. 12, 382–388 (2006).

    Article  Google Scholar 

  21. Ogawa, A. Neutralization of interleukin-17 aggravates dextran sulfate sodium-induced colitis in mice. Clin. Immunol. 110, 55–62 (2004).

    Article  CAS  Google Scholar 

  22. Tlaskalová-Hogenová, H. Involvement of innate immunity in the development of inflammatory and autoimmune diseases. Ann. NY Acad. Sci. 1051, 787–798 (2005).

    Article  Google Scholar 

  23. O'Regan, A.W., Hayden, J.M. & Berman, J.S. Osteopontin augments CD3-mediated interferon-gamma and CD40 ligand expression by T cells, which results in IL-12 production from peripheral blood mononuclear cells. J. Leukoc. Biol. 68, 495–502 (2000).

    CAS  PubMed  Google Scholar 

  24. Renkl, A.C. et al. Osteopontin functionally activates dendritic cells and induces their differentiation toward a Th1-polarizing phenotype. Blood 106, 946–955 (2005).

    Article  CAS  Google Scholar 

  25. Chen, Z. et al. Selective regulatory function of Socs3 in the formation of IL-17-secreting T cells. Proc. Natl. Acad. Sci. USA 103, 8137–8142 (2006).

    Article  CAS  Google Scholar 

  26. Yang, X.O. et al. Regulation of inflammatory responses by IL-17F. J. Exp. Med. 205, 1063–1075 (2008).

    Article  CAS  Google Scholar 

  27. Zheng, Y. et al. Interleukin-22, a TH17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445, 648–651 (2007).

    Article  CAS  Google Scholar 

  28. Kolls, J.K. & Linden, A. Interleukin-17 family members and inflammation. Immunity 21, 467–476 (2004).

    Article  CAS  Google Scholar 

  29. Park, H. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 6, 1133–1141 (2005).

    Article  CAS  Google Scholar 

  30. Harrington, L.E. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 6, 1123–1132 (2005).

    Article  CAS  Google Scholar 

  31. Boismenu, R., Chen, Y. & Havran, W.L. The role of intraepithelial gammadelta T cells: a gut-feeling. Microbes Infect. 1, 235–240 (1999).

    Article  CAS  Google Scholar 

  32. Stark, M.A. et al. Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17. Immunity 22, 285–294 (2005).

    Article  CAS  Google Scholar 

  33. Nakae, S. et al. Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity 17, 375–387 (2002).

    Article  CAS  Google Scholar 

  34. Ye, P. et al. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J. Exp. Med. 194, 519–527 (2001).

    Article  CAS  Google Scholar 

  35. Montgomery, R.R. et al. Recruitment of macrophages and polymorphonuclear leukocytes in Lyme carditis. Infect. Immun. 75, 613–620 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Tokmoulina for assistance with flow cytometry cell sorting; E. Esplugues for critical reading of the manuscript and comments; A. Lin for assistance with statistical analyses; and F. Manzo for administrative assistance. Supported by the National Multiple Sclerosis Society (W.O.) and the Howard Hughes Medical Institute (R.A.F.).

Author information

Authors and Affiliations

Authors

Contributions

W.O. and R.A.F. designed the study and wrote the manuscript; M.K. provided flow cytometry data, advice and technical guidance; W.O. did all other in vitro and in vivo experimental work; C.J.B. did histopathological scoring analyses; T.T. provided assistance with statistical analyses; Y.I. and S.N. provided Il17a−/− mice; and J.K.K. provided the Il17ra−/− mice.

Corresponding author

Correspondence to Richard A Flavell.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 2130 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

O'Connor Jr, W., Kamanaka, M., Booth, C. et al. A protective function for interleukin 17A in T cell–mediated intestinal inflammation. Nat Immunol 10, 603–609 (2009). https://doi.org/10.1038/ni.1736

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1736

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing