Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MHC class II–dependent basophil–CD4+ T cell interactions promote TH2 cytokine–dependent immunity

Abstract

Dendritic cells can prime naive CD4+ T cells; however, here we demonstrate that dendritic cell–mediated priming was insufficient for the development of T helper type 2 cell–dependent immunity. We identify basophils as a dominant cell population that coexpressed major histocompatibility complex class II and interleukin 4 message after helminth infection. Basophilia was promoted by thymic stromal lymphopoietin, and depletion of basophils impaired immunity to helminth infection. Basophils promoted antigen-specific CD4+ T cell proliferation and interleukin 4 production in vitro, and transfer of basophils augmented the population expansion of helminth-responsive CD4+ T cells in vivo. Collectively, our studies suggest that major histocompatibility complex class II–dependent interactions between basophils and CD4+ T cells promote T helper type 2 cytokine responses and immunity to helminth infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Restriction of MHC class II expression to CD11c+ DC is insufficient to promote type 2 immunity to intestinal helminth infection.
Figure 2: Blockade of IFN-γ in MHC IICD11c mice restores TH2 cytokine–dependent immunity to T. muris infection.
Figure 3: FcεRI+CD49b+ basophils coexpress MHC class II and IL-4–eGFP.
Figure 4: Depletion of FcεRI+ cells in vivo results in impaired immunity to T. muris infection.
Figure 5: TSLP treatment selectively increases basophil frequencies in vivo.
Figure 6: Basophils promote MHC class II–dependent antigen-specific CD4+ T cell proliferation and TH2 cytokine production in vitro.
Figure 7: IL-4–eGFP+ MHC class II–positive basophils are recruited to the draining lymph node after exposure to S. mansoni eggs, and they augment CD4+ T cell proliferation in vivo.

Similar content being viewed by others

References

  1. Mosmann, T.R., Cherwinski, H., Bond, M.W., Giedlin, M.A. & Coffman, R.L. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136, 2348–2357 (1986).

    CAS  Google Scholar 

  2. Reiner, S.L. Development in motion: helper T cells at work. Cell 129, 33–36 (2007).

    Article  CAS  Google Scholar 

  3. Mowen, K.A. & Glimcher, L.H. Signaling pathways in Th2 development. Immunol. Rev. 202, 203–222 (2004).

    Article  CAS  Google Scholar 

  4. Anthony, R.M., Rutitzky, L.I., Urban, J.F., Jr., Stadecker, M.J. & Gause, W.C. Protective immune mechanisms in helminth infection. Nat. Rev. Immunol. 7, 975–987 (2007).

    Article  CAS  Google Scholar 

  5. Cohn, L., Elias, J.A. & Chupp, G.L. Asthma: mechanisms of disease persistence and progression. Annu. Rev. Immunol. 22, 789–815 (2004).

    Article  CAS  Google Scholar 

  6. Perrigoue, J.G., Marshall, F.A. & Artis, D. On the hunt for helminths: innate immune cells in the recognition and response to helminth parasites. Cell. Microbiol. 10, 1757–1764 (2008).

    Article  CAS  Google Scholar 

  7. Medzhitov, R. Recognition of microorganisms and activation of the immune response. Nature 449, 819–826 (2007).

    Article  CAS  Google Scholar 

  8. Kapsenberg, M.L. Dendritic-cell control of pathogen-driven T-cell polarization. Nat. Rev. Immunol. 3, 984–993 (2003).

    Article  CAS  Google Scholar 

  9. MacDonald, A.S. & Maizels, R.M. Alarming dendritic cells for Th2 induction. J. Exp. Med. 205, 13–17 (2008).

    Article  CAS  Google Scholar 

  10. Amsen, D. et al. Instruction of distinct CD4 T helper cell fates by different notch ligands on antigen-presenting cells. Cell 117, 515–526 (2004).

    Article  CAS  Google Scholar 

  11. MacDonald, A.S., Straw, A.D., Dalton, N.M. & Pearce, E.J. Cutting edge: Th2 response induction by dendritic cells: a role for CD40. J. Immunol. 168, 537–540 (2002).

    Article  CAS  Google Scholar 

  12. Ekkens, M.J. et al. The role of OX40 ligand interactions in the development of the Th2 response to the gastrointestinal nematode parasite Heligmosomoides polygyrus. J. Immunol. 170, 384–393 (2003).

    Article  CAS  Google Scholar 

  13. Gessner, A., Mohrs, K. & Mohrs, M. Mast cells, basophils, and eosinophils acquire constitutive IL-4 and IL-13 transcripts during lineage differentiation that are sufficient for rapid cytokine production. J. Immunol. 174, 1063–1072 (2005).

    Article  CAS  Google Scholar 

  14. Mohrs, K., Wakil, A.E., Killeen, N., Locksley, R.M. & Mohrs, M. A two-step process for cytokine production revealed by IL-4 dual-reporter mice. Immunity 23, 419–429 (2005).

    Article  CAS  Google Scholar 

  15. Min, B. et al. Basophils produce IL-4 and accumulate in tissues after infection with a Th2-inducing parasite. J. Exp. Med. 200, 507–517 (2004).

    Article  CAS  Google Scholar 

  16. Skokos, D. et al. Mast cell-derived exosomes induce phenotypic and functional maturation of dendritic cells and elicit specific immune responses in vivo. J. Immunol. 170, 3037–3045 (2003).

    Article  CAS  Google Scholar 

  17. MacKenzie, J.R., Mattes, J., Dent, L.A. & Foster, P.S. Eosinophils promote allergic disease of the lung by regulating CD4+ Th2 lymphocyte function. J. Immunol. 167, 3146–3155 (2001).

    Article  CAS  Google Scholar 

  18. Padigel, U.M. et al. Eosinophils act as antigen-presenting cells to induce immunity to Strongyloides stercoralis in mice. J. Infect. Dis. 196, 1844–1851 (2007).

    Article  CAS  Google Scholar 

  19. Voehringer, D., Reese, T.A., Huang, X., Shinkai, K. & Locksley, R.M. Type 2 immunity is controlled by IL-4/IL-13 expression in hematopoietic non-eosinophil cells of the innate immune system. J. Exp. Med. 203, 1435–1446 (2006).

    Article  CAS  Google Scholar 

  20. Ohnmacht, C. & Voehringer, D. Basophil effector function and homeostasis during helminth infection. Blood 113, 2816–2825 (2008).

    Article  Google Scholar 

  21. Voehringer, D., Shinkai, K. & Locksley, R.M. Type 2 immunity reflects orchestrated recruitment of cells committed to IL-4 production. Immunity 20, 267–277 (2004).

    Article  CAS  Google Scholar 

  22. Sokol, C.L., Barton, G.M., Farr, A.G. & Medzhitov, R. A mechanism for the initiation of allergen-induced T helper type 2 responses. Nat. Immunol. 9, 310–318 (2008).

    Article  CAS  Google Scholar 

  23. Else, K.J. & Finkelman, F.D. Intestinal nematode parasites, cytokines and effector mechanisms. Int. J. Parasitol. 28, 1145–1158 (1998).

    Article  CAS  Google Scholar 

  24. Cliffe, L.J. & Grencis, R.K. The Trichuris muris system: a paradigm of resistance and susceptibility to intestinal nematode infection. Adv. Parasitol. 57, 255–307 (2004).

    Article  Google Scholar 

  25. Else, K.J., Finkelman, F.D., Maliszewski, C.R. & Grencis, R.K. Cytokine-mediated regulation of chronic intestinal helminth infection. J. Exp. Med. 179, 347–351 (1994).

    Article  CAS  Google Scholar 

  26. Lemos, M.P., Fan, L., Lo, D. & Laufer, T.M. CD8α+ and CD11b+ dendritic cell-restricted MHC class II controls Th1 CD4+ T cell immunity. J. Immunol. 171, 5077–5084 (2003).

    Article  CAS  Google Scholar 

  27. Zaph, C. et al. Epithelial-cell-intrinsic IKK-β expression regulates intestinal immune homeostasis. Nature 446, 552–556 (2007).

    Article  CAS  Google Scholar 

  28. Artis, D. et al. RELMβ/FIZZ2 is a goblet cell-specific immune-effector molecule in the gastrointestinal tract. Proc. Natl. Acad. Sci. USA 101, 13596–13600 (2004).

    Article  CAS  Google Scholar 

  29. Artis, D. Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat. Rev. Immunol. 8, 411–420 (2008).

    Article  CAS  Google Scholar 

  30. Else, K.J. & Grencis, R.K. Antibody-independent effector mechanisms in resistance to the intestinal nematode parasite Trichuris muris. Infect. Immun. 64, 2950–2954 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Zaph, C. et al. Persistence and function of central and effector memory CD4+ T cells following infection with a gastrointestinal helminth. J. Immunol. 177, 511–518 (2006).

    Article  CAS  Google Scholar 

  32. Mohrs, M., Shinkai, K., Mohrs, K. & Locksley, R.M. Analysis of type 2 immunity in vivo with a bicistronic IL-4 reporter. Immunity 15, 303–311 (2001).

    Article  CAS  Google Scholar 

  33. Denzel, A. et al. Basophils enhance immunological memory responses. Nat. Immunol. 9, 733–742 (2008).

    Article  CAS  Google Scholar 

  34. Owyang, A.M. et al. Interleukin 25 regulates type 2 cytokine-dependent immunity and limits chronic inflammation in the gastrointestinal tract. J. Exp. Med. 203, 843–849 (2006).

    Article  Google Scholar 

  35. Humphreys, N.E., Xu, D., Hepworth, M.R., Liew, F.Y. & Grencis, R.K. IL-33, a potent inducer of adaptive immunity to intestinal nematodes. J. Immunol. 180, 2443–2449 (2008).

    Article  CAS  Google Scholar 

  36. Suzukawa, M. et al. An IL-1 cytokine member, IL-33, induces human basophil activation via its ST2 receptor. J. Immunol. 181, 5981–5989 (2008).

    Article  CAS  Google Scholar 

  37. Pecaric-Petkovic, T., Didichenko, S.A., Kaempfer, S., Spiegl, N. & Dahinden, C.A. Human basophils and eosinophils are the direct target leukocytes of the novel IL-1 family member IL-33. Blood 113, 1526–1534 (2009).

    Article  CAS  Google Scholar 

  38. Smithgall, M.D. et al. IL-33 amplifies both Th1- and Th2-type responses through its activity on human basophils, allergen-reactive Th2 cells, iNKT and NK cells. Int. Immunol. 20, 1019–1030 (2008).

    Article  CAS  Google Scholar 

  39. Fallon, P.G. et al. Identification of an interleukin (IL)-25-dependent cell population that provides IL-4, IL-5, and IL-13 at the onset of helminth expulsion. J. Exp. Med. 203, 1105–1116 (2006).

    Article  CAS  Google Scholar 

  40. Taylor, J.J., Mohrs, M. & Pearce, E.J. Regulatory T cell responses develop in parallel to Th responses and control the magnitude and phenotype of the Th effector population. J. Immunol. 176, 5839–5847 (2006).

    Article  CAS  Google Scholar 

  41. Allenspach, E.J., Lemos, M.P., Porrett, P.M., Turka, L.A. & Laufer, T.M. Migratory and lymphoid-resident dendritic cells cooperate to efficiently prime naive CD4 T cells. Immunity 29, 795–806 (2008).

    Article  CAS  Google Scholar 

  42. Ehrlich, P. Beitrage zur Kenntins der granulierten Bindegewebs zellen und der eosinophilen Leukocythen. Arch Anat Physiol Lpz 3, 166–169 (1879).

    Google Scholar 

  43. Oh, K., Shen, T., Le Gros, G. & Min, B. Induction of Th2 type immunity in a mouse system reveals a novel immunoregulatory role of basophils. Blood 109, 2921–2927 (2007).

    CAS  PubMed  Google Scholar 

  44. Gauchat, J.F. et al. Induction of human IgE synthesis in B cells by mast cells and basophils. Nature 365, 340–343 (1993).

    Article  CAS  Google Scholar 

  45. Obata, K. et al. Basophils are essential initiators of a novel type of chronic allergic inflammation. Blood 110, 913–920 (2007).

    Article  CAS  Google Scholar 

  46. Min, B., Le Gros, G. & Paul, W.E. Basophils: a potential liaison between innate and adaptive immunity. Allergol. Int. 55, 99–104 (2006).

    Article  CAS  Google Scholar 

  47. Scheu, S. et al. Activation of the integrated stress response during T helper cell differentiation. Nat. Immunol. 7, 644–651 (2006).

    Article  CAS  Google Scholar 

  48. Brown, S.J., Galli, S.J., Gleich, G.J. & Askenase, P.W. Ablation of immunity to Amblyomma americanum by anti-basophil serum: cooperation between basophils and eosinophils in expression of immunity to ectoparasites (ticks) in guinea pigs. J. Immunol. 129, 790–796 (1982).

    CAS  PubMed  Google Scholar 

  49. Shen, T. et al. T cell-derived IL-3 plays key role in parasite infection-induced basophil production but is dispensable for in vivo basophil survival. Int. Immunol. 20, 1201–1209 (2008).

    Article  CAS  Google Scholar 

  50. Taylor, B.C. et al. TSLP regulates intestinal immunity and inflammation in mouse models of helminth infection and colitis. J. Exp. Med. 206, 655–667 (2009).

    Article  CAS  Google Scholar 

  51. Yoo, J. et al. Spontaneous atopic dermatitis in mice expressing an inducible thymic stromal lymphopoietin transgene specifically in the skin. J. Exp. Med. 202, 541–549 (2005).

    Article  CAS  Google Scholar 

  52. Zhou, B. et al. Thymic stromal lymphopoietin as a key initiator of allergic airway inflammation in mice. Nat. Immunol. 6, 1047–1053 (2005).

    Article  CAS  Google Scholar 

  53. Schmitz, J. et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23, 479–490 (2005).

    Article  CAS  Google Scholar 

  54. Angkasekwinai, P. et al. Interleukin 25 promotes the initiation of proallergic type 2 responses. J. Exp. Med. 204, 1509–1517 (2007).

    Article  CAS  Google Scholar 

  55. Allakhverdi, Z., Smith, D.E., Comeau, M.R. & Delespesse, G. Cutting edge: the ST2 ligand IL-33 potently activates and drives maturation of human mast cells. J. Immunol. 179, 2051–2054 (2007).

    Article  CAS  Google Scholar 

  56. Saenz, S.A., Taylor, B.C. & Artis, D. Welcome to the neighborhood: epithelial cell-derived cytokines license innate and adaptive immune responses at mucosal sites. Immunol. Rev. 226, 172–190 (2008).

    Article  CAS  Google Scholar 

  57. Falcone, F.H., Pritchard, D.I. & Gibbs, B.F. Do basophils play a role in immunity against parasites? Trends Parasitol. 17, 126–129 (2001).

    Article  CAS  Google Scholar 

  58. Schramm, G. et al. Cutting edge: IPSE/α-1, a glycoprotein from Schistosoma mansoni eggs, induces IgE-dependent, antigen-independent IL-4 production by murine basophils in vivo. J. Immunol. 178, 6023–6027 (2007).

    Article  CAS  Google Scholar 

  59. Van Rooijen, N. The liposome-mediated macrophage 'suicide' technique. J. Immunol. Methods 124, 1–6 (1989).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Mohrs (Trudeau Institute) for 4get mice; A. Troy for critical reading of this manuscript; E. Tait for generating the bone marrow chimeras; and the University of Pennsylvania Flow Cytometry Core and Center for Molecular Studies in Digestive and Liver Diseases Morphology Core for assistance with sorting and immunofluorescence staining. Supported by the National Institutes of Health (Artis lab: AI61570 and AI074878 to D.A., T32 training grant AI007532-08 to J.G.P., F31 training grant GM082187 to S.A.S. and T32 CA09140-30 to B.C.T.; Pearce lab: AI32573 and AI53825; and Laufer lab), the Burroughs Wellcome Fund (Artis lab: D.A.), the National Institute of Diabetes and Digestive Kidney Diseases (Artis lab: DK50306), the Crohn's and Colitis Foundation of America (Artis lab: D.A. and M.G.N.) and the University of Pennsylvania (Artis lab: D.A. and T.M.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Artis.

Ethics declarations

Competing interests

M.R.C. works for Amgen.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 2443 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perrigoue, J., Saenz, S., Siracusa, M. et al. MHC class II–dependent basophil–CD4+ T cell interactions promote TH2 cytokine–dependent immunity. Nat Immunol 10, 697–705 (2009). https://doi.org/10.1038/ni.1740

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1740

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing