Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1-driven immunoregulatory circuit involving interleukin 27 and interleukin 10

Abstract

Despite their central function in orchestrating immunity, dendritic cells (DCs) can respond to inhibitory signals by becoming tolerogenic. Here we show that galectin-1, an endogenous glycan-binding protein, can endow DCs with tolerogenic potential. After exposure to galectin-1, DCs acquired an interleukin 27 (IL-27)-dependent regulatory function, promoted IL-10-mediated T cell tolerance and suppressed autoimmune neuroinflammation. Consistent with its regulatory function, galectin-1 had its highest expression on DCs exposed to tolerogenic stimuli and was most abundant from the peak through the resolution of autoimmune pathology. DCs lacking galectin-1 had greater immunogenic potential and an impaired ability to halt inflammatory disease. Our findings identify a tolerogenic circuit linking galectin-1 signaling, IL-27-producing DCs and IL-10-secreting T cells, which has broad therapeutic implications in immunopathology.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Galectin-1 interferes with human DC differentiation and function.
Figure 2: Galectin-1 imparts a regulatory program in human mature DCs.
Figure 3: Galectin-1 endows mouse DCs with IL-27-dependent tolerogenic potential.
Figure 4: Galectin-1-induced regulatory DCs foster a tolerant microenvironment in antigen-specific and neoplastic settings.
Figure 5: Galectin-1-differentiated DCs suppress TH-17- and TH1-mediated neuroinflammation via IL-27 and IL-10.
Figure 6: Galectin-1 expression is higher during the peak and resolution of autoimmune inflammation and after exposure to tolerogenic stimuli.
Figure 7: Endogenous galectin-1 'fine tunes' the tolerogenic function of DCs.
Figure 8: Galectin-1-sufficient tolerogenic DCs contribute to the resolution of EAE.

Similar content being viewed by others

References

  1. Guermonprez, P., Valladeau, J., Zitvogel, L., Thery, C. & Amigorena, S. Antigen presentation and T cell stimulation by dendritic cells. Annu. Rev. Immunol. 20, 621–667 (2002).

    Article  CAS  Google Scholar 

  2. Reis e Sousa, C. Dendritic cells in a mature age. Nat. Rev. Immunol. 6, 476–483 (2006).

    Article  CAS  Google Scholar 

  3. Steinman, R.M., Hawiger, D. & Nussenzweig, M.C. Tolerogenic dendritic cells. Annu. Rev. Immunol. 21, 685–711 (2003).

    Article  CAS  Google Scholar 

  4. Morelli, A.E. & Thomson, A.W. Tolerogenic dendritic cells and the quest for transplant tolerance. Nat. Rev. Immunol. 7, 610–621 (2007).

    Article  CAS  Google Scholar 

  5. Skoberne, M. et al. The apoptotic-cell receptor CR3, but not αvβ5, is a regulator of human dendritic-cell immunostimulatory function. Blood 108, 947–955 (2006).

    Article  CAS  Google Scholar 

  6. Zhang, M. et al. Splenic stroma drives mature dendritic cells to differentiate into regulatory dendritic cells. Nat. Immunol. 5, 1124–1133 (2004).

    Article  CAS  Google Scholar 

  7. Svensson, M., Maroof, A., Ato, M. & Kaye, P.M. Stromal cells direct local differentiation of regulatory dendritic cells. Immunity 21, 805–816 (2004).

    Article  CAS  Google Scholar 

  8. Wakkach, A. et al. Characterization of dendritic cells that induce tolerance and T regulatory 1 cell differentiation in vivo. Immunity 18, 605–617 (2003).

    Article  CAS  Google Scholar 

  9. Chorny, A. et al. Vasoactive intestinal peptide induces regulatory dendritic cells with therapeutic effects on autoimmune disorders. Proc. Natl. Acad. Sci. USA 102, 13562–13567 (2005).

    Article  CAS  Google Scholar 

  10. Penna, G. et al. 1,25-Dihydroxyvitamin D3 selectively modulates tolerogenic properties in myeloid but not plasmacytoid dendritic cells. J. Immunol. 178, 145–153 (2007).

    Article  CAS  Google Scholar 

  11. Awasthi, A. et al. A dominant function for interleukin 27 in generating interleukin 10-producing anti-inflammatory T cells. Nat. Immunol. 8, 1380–1389 (2007).

    Article  CAS  Google Scholar 

  12. Kastelein, R.A., Hunter, C.A. & Cua, D.J. Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation. Annu. Rev. Immunol. 25, 221–242 (2007).

    Article  CAS  Google Scholar 

  13. Stumhofer, J.S. et al. Interleukins 27 and 6 induce STAT3-mediated T cell production of interleukin 10. Nat. Immunol. 8, 1363–1371 (2007).

    Article  CAS  Google Scholar 

  14. Fitzgerald, D.C. et al. Suppression of autoimmune inflammation of the central nervous system by interleukin 10 secreted by interleukin 27–stimulated T cells. Nat. Immunol. 8, 1372–1379 (2007).

    Article  CAS  Google Scholar 

  15. van Kooyk, Y. & Rabinovich, G.A. Protein-glycan interactions in the control of innate and adaptive immune responses. Nat. Immunol. 9, 593–601 (2008).

    Article  CAS  Google Scholar 

  16. Rabinovich, G.A. & Toscano, M.A. Turning 'sweet' on immunity: galectin-glycan interactions in immune tolerance and inflammation. Nat. Rev. Immunol. 9, 338–352 (2009).

    Article  CAS  Google Scholar 

  17. Rubinstein, N. et al. Targeted inhibition of galectin-1 gene expression in tumor cells results in heightened T cell-mediated rejection; A potential mechanism of tumor-immune privilege. Cancer Cell 5, 241–251 (2004).

    Article  CAS  Google Scholar 

  18. Juszczynski, P. et al. The AP1-dependent secretion of galectin-1 by Reed Sternberg cells fosters immune privilege in classical Hodgkin lymphoma. Proc. Natl. Acad. Sci. USA 104, 13134–13139 (2007).

    Article  CAS  Google Scholar 

  19. Toscano, M.A. et al. Differential glycosylation of TH1, TH2 and TH-17 effector cells selectively regulates susceptibility to cell death. Nat. Immunol. 8, 825–834 (2007).

    Article  CAS  Google Scholar 

  20. Blois, S.M. et al. A pivotal role for galectin-1 in fetomaternal tolerance. Nat. Med. 13, 1450–1457 (2007).

    Article  CAS  Google Scholar 

  21. Rabinovich, G.A., Gabrilovich, D. & Sotomayor, E.M. Immunosuppressive strategies that are mediated by tumor cells. Annu. Rev. Immunol. 25, 267–296 (2007).

    Article  CAS  Google Scholar 

  22. Bax, M. et al. Dendritic cell maturation results in pronounced changes in glycan expression affecting recognition by siglecs and galectins. J. Immunol. 179, 8216–8224 (2007).

    Article  CAS  Google Scholar 

  23. Kotera, Y., Shimizu, K. & Mule, J.J. Comparative analysis of necrotic and apoptotic tumor cells as a source of antigen(s) in dendritic cell-based immunization. Cancer Res. 61, 8105–8109 (2001).

    CAS  PubMed  Google Scholar 

  24. Steinman, L. A brief history of TH-17, the first major revision in the TH1/TH2 hypothesis of T cell-mediated tissue damage. Nat. Med. 13, 139–145 (2007).

    Article  CAS  Google Scholar 

  25. Stromnes, I.M., Cerretti, L.M., Liggitt, D., Harris, R.A. & Goverman, J.M. Differential regulation of central nervous system autoimmunity by TH1 and TH-17 cells. Nat. Med. 14, 337–342 (2008).

    Article  CAS  Google Scholar 

  26. Villadangos, J.A. & Schnorrer, P. Intrinsic and cooperative antigen-presenting functions of dendritic-cell subsets in vivo. Nat. Rev. Immunol. 7, 543–555 (2007).

    Article  CAS  Google Scholar 

  27. Waskow, C. et al. The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat. Immunol. 9, 676–683 (2008).

    Article  CAS  Google Scholar 

  28. Comelli, E.M. et al. Activation of murine CD4+ and CD8+ T lymphocytes leads to dramatic remodeling of N-linked glycans. J. Immunol. 177, 2431–2440 (2006).

    Article  CAS  Google Scholar 

  29. van Vliet, S.J., Gringhuis, S.I., Geijtenbeek, T.B. & van Kooyk, Y. Regulation of effector T cells by antigen-presenting cells via interaction of the C-type lectin MGL with CD45. Nat. Immunol. 7, 1200–1208 (2006).

    Article  CAS  Google Scholar 

  30. LeibundGut-Landmann, S. et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat. Immunol. 8, 630–638 (2007).

    Article  CAS  Google Scholar 

  31. Dillon, S. et al. Yeast zymosan, a stimulus for TLR2 and dectin-1, induces regulatory antigen-presenting cells and immunological tolerance. J. Clin. Invest. 116, 916–928 (2006).

    Article  CAS  Google Scholar 

  32. Urzainqui, A. et al. Functional role of P-selectin glycoprotein ligand 1/P-selectin interaction in the generation of tolerogenic dendritic cells. J. Immunol. 179, 7457–7465 (2007).

    Article  CAS  Google Scholar 

  33. Fujikado, N. et al. Dcir deficiency causes development of autoimmune diseases in mice due to excess expansion of dendritic cells. Nat. Med. 14, 176–180 (2008).

    Article  CAS  Google Scholar 

  34. Stillman, B.N. et al. Galectin-3 and galectin-1 bind distinct cell surface glycoprotein receptors to induce T cell death. J. Immunol. 176, 778–789 (2006).

    Article  CAS  Google Scholar 

  35. Motran, C.C. et al. Galectin-1 functions as a Th2 cytokine that selectively induces Th1 apoptosis and promotes Th2 function. Eur. J. Immunol. 38, 3015–3027 (2008).

    Article  CAS  Google Scholar 

  36. Stowell, S.R. et al. Differential roles of galectin-1 and galectin-3 in regulating leukocyte viability and cytokine secretion. J. Immunol. 180, 3091–3102 (2008).

    Article  CAS  Google Scholar 

  37. van der Leij, J. et al. Strongly enhanced IL-10 production using stable galectin-1 homodimers. Mol. Immunol. 44, 506–513 (2007).

    Article  CAS  Google Scholar 

  38. Norling, L.V., Sampaio, A.L., Cooper, D. & Perretti, M. Inhibitory control of endothelial galectin-1 on in vitro and in vivo lymphocyte trafficking. FASEB J. 22, 682–690 (2008).

    Article  CAS  Google Scholar 

  39. Perone, M.J. et al. Transgenic galectin-1 induces maturation of dendritic cells that elicit contrasting responses in naive and activated T cells. J. Immunol. 176, 7207–7220 (2006).

    Article  CAS  Google Scholar 

  40. Fulcher, J.A. et al. Galectin-1-matured human monocyte-derived dendritic cells have enhanced migration through extracellular matrix. J. Immunol. 177, 216–226 (2006).

    Article  CAS  Google Scholar 

  41. Garin, M.I. et al. Galectin-1: a key effector of regulation mediated by CD4+CD25+ T cells. Blood 109, 2058–2065 (2007).

    Article  CAS  Google Scholar 

  42. Batten, M. et al. Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17–producing T cells. Nat. Immunol. 7, 929–936 (2006).

    Article  CAS  Google Scholar 

  43. Bettelli, E. et al. IL-10 is critical in the regulation of autoimmune encephalomyelitis as demonstrated by studies of IL-10- and IL-4-deficient and transgenic mice. J. Immunol. 161, 3299–3306 (1998).

    CAS  PubMed  Google Scholar 

  44. Salama, A.D. et al. Critical role of the programmed death-1 (PD-1) pathway in regulation of experimental autoimmune encephalomyelitis. J. Exp. Med. 198, 71–78 (2003).

    Article  CAS  Google Scholar 

  45. Hadeiba, H. et al. CCR9 expression defines tolerogenic plasmacytoid dendritic cells able to suppress acute graft-versus-host disease. Nat. Immunol. 9, 1253–1260 (2008).

    Article  CAS  Google Scholar 

  46. Kane, C.M. et al. Helminth antigens modulate TLR-initiated dendritic cell activation. J. Immunol. 173, 7454–7461 (2004).

    Article  CAS  Google Scholar 

  47. Boonstra, A. et al. Flexibility of mouse classical and plasmacytoid-derived dendritic cells in directing T helper type 1 and 2 cell development: dependency on antigen dose and differential Toll-like receptor ligation. J. Exp. Med. 6, 101–109 (2003).

    Article  Google Scholar 

  48. Partridge, E.A. et al. Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis. Science 306, 120–124 (2004).

    Article  CAS  Google Scholar 

  49. Togayachi, A. et al. Polylactosamine on glycoproteins influences basal levels of lymphocyte and macrophage activation. Proc. Natl. Acad. Sci. USA 104, 15829–15834 (2007).

    Article  CAS  Google Scholar 

  50. Anderson, A.C. et al. Promotion of tissue inflammation by the immune receptor Tim-3 expressed on innate immune cells. Science 318, 1141–1143 (2007).

    Article  CAS  Google Scholar 

  51. Barrionuevo, P. et al. A novel function of galectin-1 at the cross-road of innate and adaptive immunity: galectin-1 regulates monocyte/macrophage physiology through a nonapoptotic ERK-dependent pathway. J. Immunol. 178, 436–445 (2007).

    Article  CAS  Google Scholar 

  52. MacKinnon, A.C. et al. Regulation of alternative macrophage activation by galectin-3. J. Immunol. 180, 2650–2658 (2008).

    Article  CAS  Google Scholar 

  53. Villagra, A. et al. The histone deacetylase HDAC11 regulates the expression of interleukin 10 and immune tolerance. Nat. Immunol. 10, 92–100 (2009).

    Article  CAS  Google Scholar 

  54. Sarter, K. et al. Detection and chromatographic removal of lipopolysaccharide in preparations of multifunctional galectins. Biochem. Biophys. Res. Commun. 379, 155–159 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank F. Poirier (Institut Jacques Monod) for Lgals1−/− mice; C.J. Saris (Amgen) for Il27ra−/− mice; H. Rosenberg (National Institutes of Health) for critical reading of the manuscript; L. Baum (University of California at Los Angeles) for plasmids; M. Doenhoff (University of Nottingham) for endotoxin-free SEA; J. Correale, N. Rubinstein, S. Blois and N. Zwirner for advice; M. Barboza and J. Stupirski for technical assistance; C. Ricordi for support; the staff of the Animal Facilities of the Institute of Biology and Experimental Medicine and the Faculty of Exact and Natural Sciences (University of Buenos Aires); and the Ferioli and Ostry families for donations. Dedicated to the memory of E. Massouh. Supported by The National Agency for Promotion of Science and Technology (Argentina), Sales Foundation for Cancer Research (Argentina), National Council of Scientific and Technical Investigation (Argentina), University of Buenos Aires (Argentina), Fiorini Foundation (Argentina), Cancer Research Institute (USA), Mizutani Foundation for Glycoscience (Japan) and Prostate Cancer Foundation (UK).

Author information

Authors and Affiliations

Authors

Contributions

J.M.I. designed and did all the experiments and contributed to manuscript preparation; D.O.C. contributed to immunohistochemistry, immunoblot analysis and confocal microscopy; G.A.B. contributed to EAE experiments; M.A.T. contributed to immunoblot and in vivo assays; M.S. contributed to real-time RT-PCR; M.E.V. contributed to in vivo assays; J.R.G. provided essential reagents and intellectual support; and G.A.R. supervised the work, designed the experiments and wrote the manuscript.

Corresponding author

Correspondence to Gabriel A Rabinovich.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12 and Supplementary Tables 1–3 (PDF 339 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ilarregui, J., Croci, D., Bianco, G. et al. Tolerogenic signals delivered by dendritic cells to T cells through a galectin-1-driven immunoregulatory circuit involving interleukin 27 and interleukin 10. Nat Immunol 10, 981–991 (2009). https://doi.org/10.1038/ni.1772

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1772

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing