Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Role of STAT5 in controlling cell survival and immunoglobulin gene recombination during pro-B cell development

Abstract

STAT5 and interleukin 7 (IL-7) signaling are thought to control B lymphopoiesis by regulating the expression of key transcription factors and by activating variable (VH) gene segments at the immunoglobulin heavy-chain (Igh) locus. Using conditional mutagenesis to delete the gene encoding the transcription factor STAT5, we demonstrate that the development of pro-B cells was restored by transgenic expression of the prosurvival protein Bcl-2, which compensated for loss of the antiapoptotic protein Mcl-1. Expression of the genes encoding the B cell–specification factor EBF1 and the B cell–commitment protein Pax5 as well as VH gene recombination were normal in STAT5- or IL-7 receptor α-chain (IL-7Rα)-deficient pro-B cells rescued by Bcl-2. STAT5-expressing pro-B cells contained little or no active chromatin at most VH genes. In contrast, rearrangements of the immunoglobulin-κ light-chain locus (Igk) were more abundant in STAT5- or IL-7Rα-deficient pro-B cells. Hence, STAT5 and IL-7 signaling control cell survival and the developmental ordering of immunoglobulin gene rearrangements by suppressing premature Igk recombination in pro-B cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rescue of STAT5-deficient pro-B cells by transgenic Bcl-2 expression.
Figure 2: Normal development and immune responses of mature B cells in the absence of STAT5.
Figure 3: STAT5 controls the survival of pro-B cells by activating Mcl1.
Figure 4: Normal Igh recombination in pro-B cells lacking STAT5 or IL-7Rα.
Figure 5: Mapping of active histone modifications along the Igh locus in Rag2−/− pro-B cells.
Figure 6: Distribution of active histone marks along the VH gene cluster in Rag2−/− pro-B cells.
Figure 7: STAT5 and IL-7 signaling repress rearrangements of Igk and Igl in pro-B cells.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. von Freeden-Jeffry, U. et al. Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J. Exp. Med. 181, 1519–1526 (1995).

    Article  CAS  Google Scholar 

  2. Miller, J.P. et al. The earliest step in B lineage differentiation from common lymphoid progenitors is critically dependent upon interleukin 7. J. Exp. Med. 196, 705–711 (2002).

    Article  CAS  Google Scholar 

  3. Kikuchi, K., Lai, A.Y., Hsu, C.-L. & Kondo, M. IL-7 receptor signaling is necessary for stage transition in adult B cell development through up-regulation of EBF. J. Exp. Med. 201, 1197–1203 (2005).

    Article  CAS  Google Scholar 

  4. Maraskovsky, E. et al. Bcl-2 can rescue T lymphocyte development in interleukin-7 receptor-deficient mice but not in mutant rag-1−/− mice. Cell 89, 1011–1019 (1997).

    Article  CAS  Google Scholar 

  5. Akashi, K., Kondo, M., von Freeden-Jeffry, U., Murray, R. & Weissman, I.L. Bcl-2 rescues T lymphopoiesis in interleukin-7 receptor-deficient mice. Cell 89, 1033–1041 (1997).

    Article  CAS  Google Scholar 

  6. Maraskovsky, E., Peschon, J.J., McKenna, H., Teepe, M. & Strasser, A. Overexpression of Bcl-2 does not rescue impaired B lymphopoiesis in IL-7 receptor-deficient mice but can enhance survival of mature B cells. Int. Immunol. 10, 1367–1375 (1998).

    Article  CAS  Google Scholar 

  7. Hennighausen, L. & Robinson, G.W. Interpretation of cytokine signaling through the transcription factors STAT5A and STAT5B. Genes Dev. 22, 711–721 (2008).

    Article  Google Scholar 

  8. Teglund, S. et al. Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell 93, 841–850 (1998).

    Article  CAS  Google Scholar 

  9. Yao, Z. et al. Stat5a/b are essential for normal lymphoid development and differentiation. Proc. Natl. Acad. Sci. USA 103, 1000–1005 (2006).

    Article  CAS  Google Scholar 

  10. Hoelbl, A. et al. Clarifying the role of Stat5 in lymphoid development and Abelson-induced transformation. Blood 107, 4898–4906 (2006).

    Article  CAS  Google Scholar 

  11. Moriggl, R. et al. Stat5 is required for IL-2-induced cell cycle progression of peripheral T cells. Immunity 10, 249–259 (1999).

    Article  CAS  Google Scholar 

  12. Sexl, V. et al. Stat5a/b contribute to interleukin 7-induced B-cell precursor expansion, but abl- and bcr/abl-induced transformation are independent of Stat5. Blood 96, 2277–2283 (2000).

    CAS  PubMed  Google Scholar 

  13. Cui, Y. et al. Inactivation of Stat5 in mouse mammary epithelium during pregnancy reveals distinct functions in cell proliferation, survival, and differentiation. Mol. Cell. Biol. 24, 8037–8047 (2004).

    Article  CAS  Google Scholar 

  14. Goetz, C.A., Harmon, I.R., O'Neil, J.J., Burchill, M.A. & Farrar, M.A. STAT5 activation underlies IL7 receptor-dependent B cell development. J. Immunol. 172, 4770–4778 (2004).

    Article  CAS  Google Scholar 

  15. Hirokawa, S., Sato, H. Kato, I. & Kudo, A. EBF-regulating Pax5 transcription is enhanced by STAT5 in the early stage of B cells. Eur. J. Immunol. 33, 1824–1829 (2003).

    Article  CAS  Google Scholar 

  16. Goetz, C.A. et al. Restricted STAT5 activation dictates appropriate thymic B versus T cell lineage commitment. J. Immunol. 174, 7753–7763 (2005).

    Article  CAS  Google Scholar 

  17. Dias, S., Silva, H. Jr., Cumano, A. & Vieira, P. Interleukin-7 is necessary to maintain the B cell potential in common lymphoid progenitors. J. Exp. Med. 201, 971–979 (2005).

    Article  CAS  Google Scholar 

  18. Roessler, S. et al. Distinct promoters mediate the regulation of Ebf1 gene expression by IL-7 and Pax5. Mol. Cell. Biol. 27, 579–594 (2007).

    Article  CAS  Google Scholar 

  19. Johnston, C.M., Wood, A.L., Bolland, D.J. & Corcoran, A.E. Complete sequence assembly and characterization of the C57BL/6 mouse Ig heavy chain V region. J. Immunol. 176, 4221–4234 (2006).

    Article  CAS  Google Scholar 

  20. Chowdhury, D. & Sen, R. Stepwise activation of the immunoglobulin μ heavy chain gene locus. EMBO J. 20, 6394–6403 (2001).

    Article  CAS  Google Scholar 

  21. Johnson, K., Angelin-Duclos, C., Park, S. & Calame, K.L. Changes in histone acetylation are associated with differences in accessibility of VH gene segments to V-DJ recombination during B-cell ontogeny and development. Mol. Cell. Biol. 23, 2438–2450 (2003).

    Article  CAS  Google Scholar 

  22. Corcoran, A.E., Riddell, A., Krooshoop, D. & Venkitaraman, A.R. Impaired immunoglobulin gene rearrangement in mice lacking the IL-7 receptor. Nature 391, 904–907 (1998).

    Article  CAS  Google Scholar 

  23. Bertolino, E. et al. Regulation of interleukin 7-dependent immunoglobulin heavy-chain variable gene rearrangements by transcription factor STAT5. Nat. Immunol. 6, 836–843 (2005).

    Article  CAS  Google Scholar 

  24. Igarashi, H., Gregory, S.C., Yokota, T., Sakaguchi, N. & Kincade, P.W. Transcription from the RAG1 locus marks the earliest lymphocyte progenitors in bone marrow. Immunity 17, 117–130 (2002).

    Article  CAS  Google Scholar 

  25. McCormack, M.P., Forster, A., Drynan, L., Pannell, R. & Rabbitts, T.H. The LMO2 T-cell oncogene is activated via chromosomal translocations or retroviral insertion during gene therapy but has no mandatory role in normal T-cell development. Mol. Cell. Biol. 23, 9003–9013 (2003).

    Article  CAS  Google Scholar 

  26. Kwon, K. et al. Instructive role of the transcription factor E2A in early B lymphopoiesis and germinal center B cell development. Immunity 28, 751–762 (2008).

    Article  CAS  Google Scholar 

  27. Yao, Z. et al. Nonredundant roles for Stat5a/b in directly regulating Foxp3. Blood 109, 4368–4375 (2007).

    Article  CAS  Google Scholar 

  28. Fleming, H.E. & Paige, C.J. Pre-B cell receptor signaling mediates selective response to IL-7 at the pro-B to pre-B cell transition via an ERK/MAP kinase-dependent pathway. Immunity 15, 521–531 (2001).

    Article  CAS  Google Scholar 

  29. Scheeren, F.A. et al. STAT5 regulates the self-renewal capacity and differentiation of human memory B cells and controls Bcl-6 expression. Nat. Immunol. 6, 303–313 (2005).

    Article  CAS  Google Scholar 

  30. Opferman, J.T. et al. Development and maintenance of B and T lymphocytes requires antiapoptotic MCL-1. Nature 426, 671–676 (2003).

    Article  CAS  Google Scholar 

  31. Schebesta, A. et al. Transcription factor Pax5 activates the chromatin of key genes involved in B cell signaling, adhesion, migration and immune function. Immunity 27, 49–63 (2007).

    Article  CAS  Google Scholar 

  32. O'Geen, H., Nicolet, C.M., Blahnik, K., Green, R. & Farnham, P.J. Comparison of sample preparation methods for ChIP-chip assays. Biotechniques 41, 577–580 (2006).

    Article  CAS  Google Scholar 

  33. Chakraborty, T. et al. Repeat organization and epigenetic regulation of the DH-Cμ domain of the immunoglobulin heavy-chain gene locus. Mol. Cell 27, 842–850 (2007).

    Article  CAS  Google Scholar 

  34. Grawunder, U., Haasner, D., Melchers, F. & Rolink, A. Rearrangement and expression of κ light chain genes can occur without μ heavy chain expression during differentiation of pre-B cells. Int. Immunol. 5, 1609–1618 (1993).

    Article  CAS  Google Scholar 

  35. Johnson, K. et al. Regulation of immunoglobulin light-chain recombination by the transcription factor IRF-4 and the attenuation of interleukin-7 signaling. Immunity 28, 335–345 (2008).

    Article  CAS  Google Scholar 

  36. Mandal, M. et al. Ras orchestrates exit from the cell cycle and light-chain recombination during early B cell development. Nat. Immunol. 10, 1110–1117 (2009).

    Article  CAS  Google Scholar 

  37. Marshall, A.J., Fleming, H.F., Wu, G.E. & Paige, C.J. Modulation of the IL-7 dose-response threshold during pro-B cell differentiation is dependent on pre-B cell receptor expression. J. Immunol. 161, 6038–6045 (1998).

    CAS  PubMed  Google Scholar 

  38. Socolovsky, M., Fallon, A.E., Wang, S., Brugnara, C. & Lodish, H.F. Fetal anemia and apoptosis of red cell progenitors in Stat5a−/−5b−/− mice: a direct role for Stat5 in Bcl-XL induction. Cell 98, 181–191 (1999).

    Article  CAS  Google Scholar 

  39. Kieslinger, M. et al. Antiapoptotic activity of Stat5 required during terminal stages of myeloid differentiation. Genes Dev. 14, 232–244 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Grillot, D.A.M. et al. bcl-x exhibits regulated expression during B cell development and activation and modulates lymphocyte survival in transgenic mice. J. Exp. Med. 183, 381–391 (1996).

    Article  CAS  Google Scholar 

  41. Motoyama, N. et al. Massive cell death of immature hematopoietic cells and neurons in bcl-x-deficient mice. Science 267, 1506–1510 (1995).

    Article  CAS  Google Scholar 

  42. Decker, T. et al. Stepwise activation of enhancer and promoter regions of the B cell commitment gene Pax5 in early lymphopoiesis. Immunity 30, 508–520 (2009).

    Article  CAS  Google Scholar 

  43. Ye, S.-K. et al. The IL-7 receptor controls the accessibility of the TCRγ locus by Stat5 and histone acetylation. Immunity 15, 813–823 (2001).

    Article  CAS  Google Scholar 

  44. Rolink, A. et al. A subpopulation of B220+ cells in murine bone marrow does not express CD19 and contains natural killer cell progenitors. J. Exp. Med. 183, 187–194 (1996).

    Article  CAS  Google Scholar 

  45. Tudor, K.S., Payne, K.J., Yamashita, Y. & Kincade, P.W. Functional assessment of precursors from murine bone marrow suggests a sequence of early B lineage differentiation events. Immunity 12, 335–345 (2000).

    Article  CAS  Google Scholar 

  46. Matthews, A.G. et al. RAG2 PHD finger couples histone H3 lysine 4 trimethylation with V(D)J recombination. Nature 450, 1106–1110 (2007).

    Article  CAS  Google Scholar 

  47. Fuxa, M. et al. Pax5 induces V-to-DJ rearrangements and locus contraction of the immunoglobulin heavy-chain gene. Genes Dev. 18, 411–422 (2004).

    Article  CAS  Google Scholar 

  48. Schebesta, M., Pfeffer, P.L. & Busslinger, M. Control of pre-BCR signaling by Pax5-dependent activation of the BLNK gene. Immunity 17, 473–485 (2002).

    Article  CAS  Google Scholar 

  49. Novobrantseva, T.I. et al. Rearrangement and expression of immunoglobulin light chain genes can precede heavy chain expression during normal B cell development in mice. J. Exp. Med. 189, 75–87 (1999).

    Article  CAS  Google Scholar 

  50. Xu, Y., Davidson, L., Alt, F.W. & Baltimore, D. Deletion of the Igκ light chain intronic enhancer/matrix attachment region impairs but does not abolish VκJκ rearrangement. Immunity 4, 377–385 (1996).

    Article  CAS  Google Scholar 

  51. Lin, H. & Grosschedl, R. Failure of B-cell differentiation in mice lacking the transcription factor EBF. Nature 376, 263–267 (1995).

    Article  CAS  Google Scholar 

  52. Rucker, E.B. III. et al. Bcl-x and Bax regulate mouse primordial germ cell survival and apoptosis during embryogenesis. Mol. Endocrinol. 14, 1038–1052 (2000).

    Article  CAS  Google Scholar 

  53. Willis, S.N. et al. Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science 315, 856–859 (2007).

    Article  CAS  Google Scholar 

  54. Peschon, J.J. et al. Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J. Exp. Med. 180, 1955–1960 (1994).

    Article  CAS  Google Scholar 

  55. Shinkai, Y. et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68, 855–867 (1992).

    Article  CAS  Google Scholar 

  56. Ogilvy, S. et al. Constitutive Bcl-2 expression throughout the hematopoietic compartment affects multiple lineages and enhances progenitor cell survival. Proc. Natl. Acad. Sci. USA 96, 14943–14948 (1999).

    Article  CAS  Google Scholar 

  57. Yang, Y.W., Model, P. & Heintz, N. Homologous recombination based modification in Escherichia coli and germline transmission in transgenic mice of a bacterial artificial chromosome. Nat. Biotechnol. 15, 859–865 (1997).

    Article  CAS  Google Scholar 

  58. Smyth, G.K. & Speed, T. Normalization of cDNA microarray data. Methods 31, 265–273 (2003).

    Article  CAS  Google Scholar 

  59. Ren, B. et al. Genome-wide location and function of DNA binding proteins. Science 290, 2306–2309 (2000).

    Article  CAS  Google Scholar 

  60. Ji, H. & Wong, W.H. TileMap: create chromosomal map of tiling array hybridizations. Bioinformatics 21, 3629–3636 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L. Hennighausen (National Institutes of Health) for Stat5fl/fl and Bcl2l1fl/fl mice; T. Rabbitts (Leeds Institute of Molecular Medicine) for the Rag1Cre/Cre mouse; J. Adams (Walter and Eliza Hall Institute of Medical Research) for the Vav-Bcl2 mouse; R. Grosschedl (Max-Planck Institute Freiburg) for the Ebf1+/− mouse; L. Hennighausen, R. Moriggl, T. Decker and A. Rolink for discussions; M. Fuxa for advice on immunoglobulin recombination analysis; A. Ebert for help with ChIP analyses; I. Tamir for bioinformatics analysis of ChIP-on-chip data; and G. Stengl for flow cytometry sorting. Supported by Boehringer Ingelheim, the Austrian Science Fund (P16701-BO9), the Austrian GEN-AU initiative (Bundesminsterium für Bildung und Wissenschaft) and the European Union Sixth Framework Programme (funding the Epigenome Network of Excellence and a Marie-Curie fellowship to S. Malin).

Author information

Authors and Affiliations

Authors

Contributions

S. Malin did most experiments; S. McManus contributed the ChIP-on-chip analyses; C.C. generated and characterized the Ikzf1Ebf1 transgenic mouse; A.D. did the histological analysis of autoimmune mice; M.N. did the bioinformatics analysis of the Igh locus; P.B. and A.S. provided the Mcl1fl/fl mouse; and M.B. and S. Malin planned the project, designed the experiments and wrote the manuscript.

Corresponding author

Correspondence to Meinrad Busslinger.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–18 and Supplementary Tables 1–2 (PDF 2886 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malin, S., McManus, S., Cobaleda, C. et al. Role of STAT5 in controlling cell survival and immunoglobulin gene recombination during pro-B cell development. Nat Immunol 11, 171–179 (2010). https://doi.org/10.1038/ni.1827

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1827

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing