Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CXCR4 acts as a costimulator during thymic β-selection

Abstract

Passage through the β-selection developmental checkpoint requires productive rearrangement of segments of the T cell antigen receptor-β gene (Tcrb) and formation of a pre-TCR on the surface of CD4CD8 thymocytes. How other receptors influence ββ-selection is less well understood. Here we define a new role for the chemokine receptor CXCR4 during T cell development. CXCR4 functionally associated with the pre-TCR and influenced β-selection by regulating the steady-state localization of immature thymocytes in thymic subregions, by facilitating optimal pre-TCR-induced survival signals, and by promoting thymocyte proliferation. We also characterize functionally relevant signaling molecules downstream of CXCR4 and the pre-TCR in thymocytes. Our data designate CXCR4 as a costimulator of the pre-TCR during β-selection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CXCR4 regulates β-selection in vivo.
Figure 2: CXCR4 deletion affects the localization and survival of early thymic progenitors in vivo.
Figure 3: CXCR4 provides differentiation and survival signals during T cell development.
Figure 4: CXCR4 is required for pre-TCR-dependent survival signals.
Figure 5: CXCR4 acts as a costimulator for the pre-TCR.
Figure 6: The pre-TCR regulates CXCR4 signaling and physically associates with CXCR4.
Figure 7: ShcA is an essential participant downstream of CXCR4 signaling for the migration and localization of DN thymocytes.

Similar content being viewed by others

References

  1. Kruisbeek, A.M. et al. Branching out to gain control: how the pre-TCR is linked to multiple functions. Immunol. Today 21, 637–644 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Wiest, D.L., Berger, M.A. & Carleton, M. Control of early thymocyte development by the pre-T cell receptor complex: A receptor without a ligand? Semin. Immunol. 11, 251–262 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. von Boehmer, H. Unique features of the pre-T-cell receptor α-chain: not just a surrogate. Nat. Rev. Immunol. 5, 571–577 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Petrie, H.T. & Zúñiga-Pflücker, J.C. Zoned out: functional mapping of stromal signaling microenvironments in the thymus. Annu. Rev. Immunol. 25, 649–679 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Hollander, G. et al. Cellular and molecular events during early thymus development. Immunol. Rev. 209, 28–46 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Takahama, Y. Journey through the thymus: stromal guides for T-cell development and selection. Nat. Rev. Immunol. 6, 127–135 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Zou, Y.R., Kottmann, A.H., Kuroda, M., Taniuchi, I. & Littman, D.R. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393, 595–599 (1998).

    Article  CAS  PubMed  Google Scholar 

  8. Nagasawa, T. et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382, 635–638 (1996).

    Article  CAS  PubMed  Google Scholar 

  9. Tachibana, K. et al. The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature 393, 591–594 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Ceradini, D.J. et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat. Med. 10, 858–864 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Okada, T. et al. Chemokine requirements for B cell entry to lymph nodes and Peyer′s patches. J. Exp. Med. 196, 65–75 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Feng, Y., Broder, C.C., Kennedy, P.E. & Berger, E.A. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272, 872–877 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Poznansky, M.C. et al. Active movement of T cells away from a chemokine. Nat. Med. 6, 543–548 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Cyster, J.G. Chemorepulsion and thymocyte emigration. J. Clin. Invest. 109, 1011–1012 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kumar, A. et al. CXCR4 physically associates with the T cell receptor to signal in T cells. Immunity 25, 213–224 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Molon, B. et al. T cell costimulation by chemokine receptors. Nat. Immunol. 6, 465–471 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Plotkin, J., Prockop, S.E., Lepique, A. & Petrie, H.T. Critical role for CXCR4 signaling in progenitor localization and T cell differentiation in the postnatal thymus. J. Immunol. 171, 4521–4527 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Aifantis, I., Mandal, M., Sawai, K., Ferrando, A. & Vilimas, T. Regulation of T-cell progenitor survival and cell-cycle entry by the pre-T-cell receptor. Immunol. Rev. 209, 159–169 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Ciofani, M. & Zúñiga-Pflücker, J.C. The thymus as an inductive site for T lymphopoiesis. Annu. Rev. Cell Dev. Biol. 23, 463–493 (2007).

    Article  CAS  PubMed  Google Scholar 

  20. Ciofani, M. et al. Obligatory role for cooperative signaling by pre-TCR and Notch during thymocyte differentiation. J. Immunol. 172, 5230–5239 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Haks, M.C., Krimpenfort, P., van den Brakel, J.H. & Kruisbeek, A.M. Pre-TCR signaling and inactivation of p53 induces crucial cell survival pathways in pre-T cells. Immunity 11, 91–101 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Opferman, J.T. & Korsmeyer, S.J. Apoptosis in the development and maintenance of the immune system. Nat. Immunol. 4, 410–415 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Voll, R.E. et al. NF-κB activation by the pre-T cell receptor serves as a selective survival signal in T lymphocyte development. Immunity 13, 677–689 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Mandal, M. et al. The BCL2A1 gene as a pre-T cell receptor-induced regulator of thymocyte survival. J. Exp. Med. 201, 603–614 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lind, E.F., Prockop, S.E., Porritt, H.E. & Petrie, H.T. Mapping precursor movement through the postnatal thymus reveals specific microenvironments supporting defined stages of early lymphoid development. J. Exp. Med. 194, 127–134 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sierro, F. et al. Disrupted cardiac development but normal hematopoiesis in mice deficient in the second CXCL12/SDF-1 receptor, CXCR7. Proc. Natl. Acad. Sci. USA 104, 14759–14764 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schols, D. et al. Inhibition of T-tropic HIV strains by selective antagonization of the chemokine receptor CXCR4. J. Exp. Med. 186, 1383–1388 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nie, Y. et al. The role of CXCR4 in maintaining peripheral B cell compartments and humoral immunity. J. Exp. Med. 200, 1145–1156 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee, P.P. et al. A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity 15, 763–774 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Kabashima, K. et al. CXCR4 engagement promotes dendritic cell survival and maturation. Biochem. Biophys. Res. Commun. 361, 1012–1016 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Suzuki, Y., Rahman, M. & Mitsuya, H. Diverse transcriptional response of CD4+ T cells to stromal cell-derived factor (SDF)-1: cell survival promotion and priming effects of SDF-1 on CD4+ T cells. J. Immunol. 167, 3064–3073 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. Schmitt, T.M. & Zúñiga-Pflücker, J.C. Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro. Immunity 17, 749–756 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Ciofani, M. & Zúñiga-Pflücker, J.C. A survival guide to early T cell development. Immunol. Res. 34, 117–132 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Yang, L. et al. Blocking CXCR4-mediated cyclic AMP suppression inhibits brain tumor growth in vivo. Cancer Res. 67, 651–658 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Shinkai, Y. et al. RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68, 855–867 (1992).

    Article  CAS  PubMed  Google Scholar 

  36. Shinkai, Y. et al. Restoration of T cell development in RAG-2-deficient mice by functional TCR transgenes. Science 259, 822–825 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Aifantis, I., Gounari, F., Scorrano, L., Borowski, C. & von Boehmer, H. Constitutive pre-TCR signaling promotes differentiation through Ca2+ mobilization and activation of NF-κB and NFAT. Nat. Immunol. 2, 403–409 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Trautmann, A. Chemokines as immunotransmitters? Nat. Immunol. 6, 427–428 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Sotsios, Y., Whittaker, G.C., Westwick, J. & Ward, S.G. The CXC chemokine stromal cell-derived factor activates a Gi-coupled phosphoinositide 3-kinase in T lymphocytes. J. Immunol. 163, 5954–5963 (1999).

    CAS  PubMed  Google Scholar 

  40. Kelemen, B.R., Hsiao, K. & Goueli, S.A. Selective in vivo inhibition of mitogen-activated protein kinase activation using cell-permeable peptides. J. Biol. Chem. 277, 8741–8748 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Alsayed, Y. et al. Mechanisms of regulation of CXCR4/SDF-1 (CXCL12)-dependent migration and homing in multiple myeloma. Blood 109, 2708–2717 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kremer, K.N., Humphreys, T.D., Kumar, A., Qian, N.X. & Hedin, K.E. Distinct role of ZAP-70 and Src homology 2 domain-containing leukocyte protein of 76 kDa in the prolonged activation of extracellular signal-regulated protein kinase by the stromal cell-derived factor-1α/CXCL12 chemokine. J. Immunol. 171, 360–367 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Trampont, P., Zhang, L. & Ravichandran, K.S. ShcA mediates the dominant pathway to extracellular signal-regulated kinase activation during early thymic development. Mol. Cell. Biol. 26, 9035–9044 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang, L., Camerini, V., Bender, T.P. & Ravichandran, K.S. A nonredundant role for the adapter protein Shc in thymic T cell development. Nat. Immunol. 3, 749–755 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Patrussi, L. et al. p52Shc is required for CXCR4-dependent signaling and chemotaxis in T cells. Blood 110, 1730–1738 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. von Boehmer, H. et al. Crucial function of the pre-T-cell receptor (TCR) in TCR beta selection, TCR beta allelic exclusion and αβ versus γδ lineage commitment. Immunol. Rev. 165, 111–119 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Espert, L. et al. Autophagy is involved in T cell death after binding of HIV-1 envelope proteins to CXCR4. J. Clin. Invest. 116, 2161–2172 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Brooks, D.G., Kitchen, S.G., Kitchen, C.M., Scripture-Adams, D.D. & Zack, J.A. Generation of HIV latency during thymopoiesis. Nat. Med. 7, 459–464 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Yoder, A. et al. HIV envelope-CXCR4 signaling activates cofilin to overcome cortical actin restriction in resting CD4 T cells. Cell 134, 782–792 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Broxmeyer, H.E. et al. Transgenic expression of stromal cell-derived factor-1/CXC chemokine ligand 12 enhances myeloid progenitor cell survival/antiapoptosis in vitro in response to growth factor withdrawal and enhances myelopoiesis in vivo. J. Immunol. 170, 421–429 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J.C. Zúñiga-Pflücker (Sunnybrook Research Institute, University of Toronto) for OP9-DL1 cells; I. Aifantis (New York University School of Medicine) for SCIET27 and SCB29 cells; the flow cytometry and histology core facilities at the University of Virginia for technical assistance; members of the Ravichandran laboratory and specifically I.J. Juncadella and M.R. Elliott for technical assistance; and J. Lysiak and R. Woodson for help with the Apostain technique. Supported by the National Institute of General Medical Sciences (K.S.R.), the National Cancer Institute (T.P.B.) and the Howard Hughes Medical Institute (D.R.L.).

Author information

Authors and Affiliations

Authors

Contributions

P.C.T. designed and did the experiments and wrote the manuscript; A.-C.T.-T. did the experiments for Figures 6a,c,e,f and 7a,b and helped with the manuscript; A.K.D. provided the Rag2−/− and Rag2−/− TCRβ+ mice and provided assistance for Figure 3a; Y.S. provided the data in Figure 1b; T.B.P. and A.E.S. provided access to mouse strains and reagents; D.R.L. shared unpublished information and provided the floxed Cxcr4 mouse strain and intellectual input; and K.S.R. supervised the overall design, the conduct and interpretation of the experiments, and the writing of the manuscript.

Corresponding author

Correspondence to Kodi S Ravichandran.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9 and Supplementary Table 1 (PDF 856 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trampont, P., Tosello-Trampont, AC., Shen, Y. et al. CXCR4 acts as a costimulator during thymic β-selection. Nat Immunol 11, 162–170 (2010). https://doi.org/10.1038/ni.1830

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1830

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing