Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation

An Erratum to this article was published on 01 June 2010

This article has been updated

Abstract

The organization and dynamics of receptors and other molecules in the plasma membrane are not well understood. Here we analyzed the spatio-temporal dynamics of T cell antigen receptor (TCR) complexes and linker for activation of T cells (Lat), a key adaptor molecule in the TCR signaling pathway, in T cell membranes using high-speed photoactivated localization microscopy, dual-color fluorescence cross-correlation spectroscopy and transmission electron microscopy. In quiescent T cells, both molecules existed in separate membrane domains (protein islands), and these domains concatenated after T cell activation. These concatemers were identical to signaling microclusters, a prominent hallmark of T cell activation. This separation versus physical juxtapositioning of receptor domains and domains containing downstream signaling molecules in quiescent versus activated T cells may be a general feature of plasma membrane–associated signal transduction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Analysis of the distribution of CD3ζ and Lat in native T cell plasma membrane sheets by hsPALM.
Figure 2: Analysis of the distribution of endogenous TCRβ in T cells by hsPALM.
Figure 3: TEM analysis of the concatenation of CD3ζ and Lat islands.
Figure 4: Analysis of the correlation of CD3ζ and Lat in live T cells on bilayers by dcFCCS.
Figure 5: Kinetics of the correlation between CD3ζ and Lat themselves and each other in T cells on nonactivating and activating bilayers.

Similar content being viewed by others

Change history

  • 29 January 2010

    In the version of this article initially published, some rows in Table 1 were misaligned. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Monks, C.R., Freiberg, B.A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86 (1998).

    Article  CAS  Google Scholar 

  2. Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–227 (1999).

    Article  CAS  Google Scholar 

  3. Bunnell, S.C. et al. T cell receptor ligation induces the formation of dynamically regulated signaling assemblies. J. Cell Biol. 158, 1263–1275 (2002).

    Article  CAS  Google Scholar 

  4. Campi, G., Varma, R. & Dustin, M.L. Actin and agonist MHC-peptide complex-dependent T cell receptor microclusters as scaffolds for signaling. J. Exp. Med. 202, 1031–1036 (2005).

    Article  CAS  Google Scholar 

  5. Yokosuka, T. et al. Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76. Nat. Immunol. 6, 1253–1262 (2005).

    Article  CAS  Google Scholar 

  6. Varma, R., Campi, G., Yokosuka, T., Saito, T. & Dustin, M.L. T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster. Immunity 25, 117–127 (2006).

    Article  CAS  Google Scholar 

  7. Wilson, B.S., Pfeiffer, J.R. & Oliver, J.M. Observing FcεRI signaling from the inside of the mast cell membrane. J. Cell Biol. 149, 1131–1142 (2000).

    Article  CAS  Google Scholar 

  8. Wilson, B.S., Pfeiffer, J.R., Surviladze, Z., Gaudet, E.A. & Oliver, J.M. High resolution mapping of mast cell membranes reveals primary and secondary domains of FcεRI and LAT. J. Cell Biol. 154, 645–658 (2001).

    Article  CAS  Google Scholar 

  9. Schamel, W.W. et al. Coexistence of multivalent and monovalent TCRs explains high sensitivity and wide range of response. J. Exp. Med. 202, 493–503 (2005).

    Article  CAS  Google Scholar 

  10. Fernandez-Miguel, G. et al. Multivalent structure of an αβT cell receptor. Proc. Natl. Acad. Sci. USA 96, 1547–1552 (1999).

    Article  CAS  Google Scholar 

  11. Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    Article  CAS  Google Scholar 

  12. Hess, S.T. et al. Dynamic clustered distribution of hemagglutinin resolved at 40 nm in living cell membranes discriminates between raft theories. Proc. Natl. Acad. Sci. USA 104, 17370–17375 (2007).

    Article  CAS  Google Scholar 

  13. Shroff, H., Galbraith, C.G., Galbraith, J.A. & Betzig, E. Live-cell photoactivated localization microscopy of nanoscale adhesion dynamics. Nat. Methods 5, 417–423 (2008).

    Article  CAS  Google Scholar 

  14. Magde, D., Elson, E.L. & Webb, W.W. Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 13, 29–61 (1974).

    Article  CAS  Google Scholar 

  15. Bacia, K., Kim, S.A. & Schwille, P. Fluorescence cross-correlation spectroscopy in living cells. Nat. Methods 3, 83–89 (2006).

    Article  CAS  Google Scholar 

  16. Groves, J.T., Parthasarathy, R. & Forstner, M.B. Fluorescence imaging of membrane dynamics. Annu. Rev. Biomed. Eng. 10, 311–338 (2008).

    Article  CAS  Google Scholar 

  17. Sanan, D.A. & Anderson, R.G. Simultaneous visualization of LDL receptor distribution and clathrin lattices on membranes torn from the upper surface of cultured cells. J. Histochem. Cytochem. 39, 1017–1024 (1991).

    Article  CAS  Google Scholar 

  18. Lillemeier, B.F., Pfeiffer, J.R., Surviladze, Z., Wilson, B.S. & Davis, M.M. Plasma membrane-associated proteins are clustered into islands attached to the cytoskeleton. Proc. Natl. Acad. Sci. USA 103, 18992–18997 (2006).

    Article  CAS  Google Scholar 

  19. Chudakov, D.M. et al. Photoswitchable cyan fluorescent protein for protein tracking. Nat. Biotechnol. 22, 1435–1439 (2004).

    Article  CAS  Google Scholar 

  20. Seder, R.A., Paul, W.E., Davis, M.M. & Fazekas de St Groth, B. The presence of interleukin 4 during in vitro priming determines the lymphokine-producing potential of CD4+ T cells from T cell receptor transgenic mice. J. Exp. Med. 176, 1091–1098 (1992).

    Article  CAS  Google Scholar 

  21. Ripley, B.D. Modeling spatial patterns. J. R. Stat. Soc. [Ser A] B39, 172–212 (1977).

    Google Scholar 

  22. Ripley, B.D. Tests of randomness for spatial point patterns. J. R. Stat. Soc. [Ser A] B41, 368–374 (1979).

    Google Scholar 

  23. Liu, J. et al. Crystallization of a deglycosylated T cell receptor (TCR) complexed with an anti-TCR Fab fragment. J. Biol. Chem. 271, 33639–33646 (1996).

    Article  CAS  Google Scholar 

  24. Fahmy, T.M., Bieler, J.G., Edidin, M. & Schneck, J.P. Increased TCR avidity after T cell activation: a mechanism for sensing low-density antigen. Immunity 14, 135–143 (2001).

    CAS  PubMed  Google Scholar 

  25. Aivazian, D. & Stern, L.J. Phosphorylation of T cell receptor zeta is regulated by a lipid dependent folding transition. Nat. Struct. Biol. 7, 1023–1026 (2000).

    Article  CAS  Google Scholar 

  26. Sigalov, A.B., Aivazian, D.A., Uversky, V.N. & Stern, L.J. Lipid-binding activity of intrinsically unstructured cytoplasmic domains of multichain immune recognition receptor signaling subunits. Biochemistry 45, 15731–15739 (2006).

    Article  CAS  Google Scholar 

  27. Xu, C. et al. Regulation of T cell receptor activation by dynamic membrane binding of the CD3ε cytoplasmic tyrosine-based motif. Cell 135, 702–713 (2008).

    Article  CAS  Google Scholar 

  28. Sako, Y. & Kusumi, A. Compartmentalized structure of the plasma membrane for receptor movements as revealed by a nanometer-level motion analysis. J. Cell Biol. 125, 1251–1264 (1994).

    Article  CAS  Google Scholar 

  29. Kusumi, A., Ike, H., Nakada, C., Murase, K. & Fujiwara, T. Single-molecule tracking of membrane molecules: plasma membrane compartmentalization and dynamic assembly of raft-philic signaling molecules. Semin. Immunol. 17, 3–21 (2005).

    Article  CAS  Google Scholar 

  30. James, J.R. et al. Single-molecule level analysis of the subunit composition of the T cell receptor on live T cells. Proc. Natl. Acad. Sci. USA 104, 17662–17667 (2007).

    Article  CAS  Google Scholar 

  31. Simson, R., Sheets, E.D. & Jacobson, K. Detection of temporary lateral confinement of membrane proteins using single-particle tracking analysis. Biophys. J. 69, 989–993 (1995).

    Article  CAS  Google Scholar 

  32. Irvine, D.J., Purbhoo, M.A., Krogsgaard, M. & Davis, M.M. Direct observation of ligand recognition by T cells. Nature 419, 845–849 (2002).

    Article  CAS  Google Scholar 

  33. Exley, M., Wileman, T., Mueller, B. & Terhorst, C. Evidence for multivalent structure of T cell antigen receptor complex. Mol. Immunol. 32, 829–839 (1995).

    Article  CAS  Google Scholar 

  34. Bonefeld, C.M. et al. TCR comodulation of nonengaged TCR takes place by a protein kinase C and CD3γ di-leucine-based motif-dependent mechanism. J. Immunol. 171, 3003–3009 (2003).

    Article  CAS  Google Scholar 

  35. Douglass, A.D. & Vale, R.D. Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells. Cell 121, 937–950 (2005).

    Article  CAS  Google Scholar 

  36. Chu, D.H., Morita, C.T. & Weiss, A. The Syk family of protein tyrosine kinases in T cell activation and development. Immunol. Rev. 165, 167–180 (1998).

    Article  CAS  Google Scholar 

  37. Samelson, L.E. Signal transduction mediated by the T cell antigen receptor: the role of adapter proteins. Annu. Rev. Immunol. 20, 371–394 (2002).

    Article  CAS  Google Scholar 

  38. Zhang, J. et al. Characterizing the topography of membrane receptors and signaling molecules from spatial patterns obtained using nanometer-scale electron-dense probes and electron microscopy. Micron 37, 14–34 (2006).

    Article  CAS  Google Scholar 

  39. Forstner, M.B., Yee, C.K., Parikh, A.N. & Groves, J.T. Lipid lateral mobility and membrane phase structure modulation by protein binding. J. Am. Chem. Soc. 128, 15221–15227 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Wilson for advice on TEM and plasma membrane sheet preparation; J. Perrino from the Cell Sciences Imaging Facility for expertise and service; and F. Tynan for comments on the manuscript. Supported by the US National Institutes of Health (AI 55277 to M.M.D.), the US National Science Foundation (J.T.G.), the Howard Hughes Medical Institute (M.M.D. and J.T.G.) and the Human Frontier Science Program (B.F.L.).

Author information

Authors and Affiliations

Authors

Contributions

B.F.L. and M.M.D., conceptualization and manuscript preparation; B.F.L., PALM experiments and analysis, TEM studies, molecular biology, cell biology and protein chemistry; M.A.M., PALM conceptualization and analysis software; M.B.F. and J.T.G., dcFCCS conceptualization; M.B.F., dcFCCS software and analysis; M.B.F. and B.F.L., dcFCCS experiments; and J.B.H., anti-TCRβ-scFv and microscope setup.

Corresponding author

Correspondence to Mark M Davis.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11, Supplementary Tables 1–2 and Supplementary Methods (PDF 8659 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lillemeier, B., Mörtelmaier, M., Forstner, M. et al. TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation. Nat Immunol 11, 90–96 (2010). https://doi.org/10.1038/ni.1832

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1832

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing