Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

HVCN1 modulates BCR signal strength via regulation of BCR-dependent generation of reactive oxygen species

Abstract

Voltage-gated proton currents regulate generation of reactive oxygen species (ROS) in phagocytic cells. In B cells, stimulation of the B cell antigen receptor (BCR) results in the production of ROS that participate in B cell activation, but the involvement of proton channels is unknown. We report here that the voltage-gated proton channel HVCN1 associated with the BCR complex and was internalized together with the BCR after activation. BCR-induced generation of ROS was lower in HVCN1-deficient B cells, which resulted in attenuated BCR signaling via impaired BCR-dependent oxidation of the tyrosine phosphatase SHP-1. This resulted in less activation of the kinases Syk and Akt, impaired mitochondrial respiration and glycolysis and diminished antibody responses in vivo. Our findings identify unanticipated functions for proton channels in B cells and demonstrate the importance of ROS in BCR signaling and downstream metabolism.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HVCN1 protein expression in B cells.
Figure 2: Association of HVCN1 with the BCR.
Figure 3: BCR stimulation results in less BCR-dependent production of ROS and SHP-1 oxidation in the absence of HVCN1.
Figure 4: Absence of HVCN1 results in less tyrosine phosphorylation and impaired activation of Syk and Akt.
Figure 5: HVCN1 deficiency results in impaired cellular metabolism and proliferation in vitro.
Figure 6: Impaired antibody responses in HVCN1-deficient mice.
Figure 7: B cell–autonomous impaired antibody responses in HVCN1-deficient mice.

Similar content being viewed by others

References

  1. Batista, F.D. & Neuberger, M.S. Affinity dependence of the B cell response to antigen: a threshold, a ceiling, and the importance of off-rate. Immunity 8, 751–759 (1998).

    Article  CAS  Google Scholar 

  2. Paus, D. et al. Antigen recognition strength regulates the choice between extrafollicular plasma cell and germinal center B cell differentiation. J. Exp. Med. 203, 1081–1091 (2006).

    Article  CAS  Google Scholar 

  3. Reth, M. & Brummer, T. Feedback regulation of lymphocyte signalling. Nat. Rev. Immunol. 4, 269–277 (2004).

    Article  CAS  Google Scholar 

  4. Okkenhaug, K. & Vanhaesebroeck, B. PI3K in lymphocyte development, differentiation and activation. Nat. Rev. Immunol. 3, 317–330 (2003).

    Article  CAS  Google Scholar 

  5. Zhang, J., Somani, A.K. & Siminovitch, K.A. Roles of the SHP-1 tyrosine phosphatase in the negative regulation of cell signalling. Semin. Immunol. 12, 361–378 (2000).

    Article  CAS  Google Scholar 

  6. Reth, M. Hydrogen peroxide as second messenger in lymphocyte activation. Nat. Immunol. 3, 1129–1134 (2002).

    Article  CAS  Google Scholar 

  7. Maly, F.E. et al. The superoxide generating system of B cell lines. Structural homology with the phagocytic oxidase and triggering via surface Ig. J. Immunol. 140, 2334–2339 (1988).

    CAS  PubMed  Google Scholar 

  8. Maly, F.E. et al. Superoxide-dependent nitroblue tetrazolium reduction and expression of cytochrome b-245 components by human tonsillar B lymphocytes and B cell lines. J. Immunol. 142, 1260–1267 (1989).

    CAS  PubMed  Google Scholar 

  9. Leca, G. et al. Respiratory burst in human B lymphocytes. Triggering of surface Ig receptors induces modulation of chemiluminescence signal. J. Immunol. 146, 3542–3549 (1991).

    CAS  PubMed  Google Scholar 

  10. Maly, F.E. et al. Oxidative burst in human Epstein-Barr virus-transformed B-cell lines triggered by immobilized specific antigen. Scand. J. Immunol. 32, 661–667 (1990).

    Article  CAS  Google Scholar 

  11. Singh, D.K. et al. The strength of receptor signaling is centrally controlled through a cooperative loop between Ca2+ and an oxidant signal. Cell 121, 281–293 (2005).

    Article  CAS  Google Scholar 

  12. Volkman, D.J., Buescher, E.S., Gallin, J.I. & Fauci, A.S. B cell lines as models for inherited phagocytic diseases: abnormal superoxide generation in chronic granulomatous disease and giant granules in Chediak-Higashi syndrome. J. Immunol. 133, 3006–3009 (1984).

    CAS  PubMed  Google Scholar 

  13. Jones, O.T.G., Jones, S.A. & Wood, J.D. Expression of components of the superoxide generating NADPH oxidase by human leucocytes and other cells. Protoplasma 184, 1–4 (1995).

    Article  Google Scholar 

  14. Wienands, J., Larbolette, O. & Reth, M. Evidence for a preformed transducer complex organized by the B cell antigen receptor. Proc. Natl. Acad. Sci. USA 93, 7865–7870 (1996).

    Article  CAS  Google Scholar 

  15. Ramsey, I.S., Moran, M.M., Chong, J.A. & Clapham, D.E. A voltage-gated proton-selective channel lacking the pore domain. Nature 440, 1213–1216 (2006).

    Article  CAS  Google Scholar 

  16. Sasaki, M., Takagi, M. & Okamura, Y. A voltage sensor-domain protein is a voltage-gated proton channel. Science 312, 589–592 (2006).

    Article  CAS  Google Scholar 

  17. Murata, Y., Iwasaki, H., Sasaki, M., Inaba, K. & Okamura, Y. Phosphoinositide phosphatase activity coupled to an intrinsic voltage sensor. Nature 435, 1239–1243 (2005).

    Article  CAS  Google Scholar 

  18. DeCoursey, T.E., Morgan, D. & Cherny, V.V. The voltage dependence of NADPH oxidase reveals why phagocytes need proton channels. Nature 422, 531–534 (2003).

    Article  CAS  Google Scholar 

  19. Morgan, D. et al. Voltage-gated proton channels maintain pH in human neutrophils during phagocytosis. Proc. Natl. Acad. Sci. USA 106, 18022–18027 (2009).

    Article  CAS  Google Scholar 

  20. Schilling, T., Gratopp, A., DeCoursey, T.E. & Eder, C. Voltage-activated proton currents in human lymphocytes. J. Physiol. (Lond.) 545, 93–105 (2002).

    Article  CAS  Google Scholar 

  21. Boyd, R.S. et al. Protein profiling of plasma membranes defines aberrant signaling pathways in mantle cell lymphoma. Mol. Cell. Proteomics 8, 1501–1515 (2009).

    Article  CAS  Google Scholar 

  22. Rolli, V. et al. Amplification of B cell antigen receptor signaling by a Syk/ITAM positive feedback loop. Mol. Cell 10, 1057–1069 (2002).

    Article  CAS  Google Scholar 

  23. Batista, F.D. & Neuberger, M.S. B cells extract and present immobilized antigen: implications for affinity discrimination. EMBO J. 19, 513–520 (2000).

    Article  CAS  Google Scholar 

  24. Weiss, A. & Littman, D.R. Signal transduction by lymphocyte antigen receptors. Cell 76, 263–274 (1994).

    Article  CAS  Google Scholar 

  25. Okochi, Y., Sasaki, M., Iwasaki, H. & Okamura, Y. Voltage-gated proton channel is expressed on phagosomes. Biochem. Biophys. Res. Commun. 382, 274–279 (2009).

    Article  CAS  Google Scholar 

  26. Ramsey, I.S., Ruchti, E., Kaczmarek, J.S. & Clapham, D.E. Hv1 proton channels are required for high-level NADPH oxidase-dependent superoxide production during the phagocyte respiratory burst. Proc. Natl. Acad. Sci. USA 106, 7642–7647 (2009).

    Article  CAS  Google Scholar 

  27. Hystad, M.E. et al. Characterization of early stages of human B cell development by gene expression profiling. J. Immunol. 179, 3662–3671 (2007).

    Article  CAS  Google Scholar 

  28. Cornall, R.J. et al. Polygenic autoimmune traits: Lyn, CD22, and SHP-1 are limiting elements of a biochemical pathway regulating BCR signaling and selection. Immunity 8, 497–508 (1998).

    Article  CAS  Google Scholar 

  29. Persson, C. et al. Preferential oxidation of the second phosphatase domain of receptor-like PTP-α revealed by an antibody against oxidized protein tyrosine phosphatases. Proc. Natl. Acad. Sci. USA 101, 1886–1891 (2004).

    Article  CAS  Google Scholar 

  30. Pathak, M.K. & Yi, T. Sodium stibogluconate is a potent inhibitor of protein tyrosine phosphatases and augments cytokine responses in hemopoietic cell lines. J. Immunol. 167, 3391–3397 (2001).

    Article  CAS  Google Scholar 

  31. Dustin, L.B. et al. Expression of dominant-negative src-homology domain 2-containing protein tyrosine phosphatase-1 results in increased Syk tyrosine kinase activity and B cell activation. J. Immunol. 162, 2717–2724 (1999).

    CAS  PubMed  Google Scholar 

  32. Kurosaki, T. Molecular mechanisms in B cell antigen receptor signaling. Curr. Opin. Immunol. 9, 309–318 (1997).

    Article  CAS  Google Scholar 

  33. Beitz, L.O., Fruman, D.A., Kurosaki, T., Cantley, L.C. & Scharenberg, A.M. SYK is upstream of phosphoinositide 3-kinase in B cell receptor signaling. J. Biol. Chem. 274, 32662–32666 (1999).

    Article  CAS  Google Scholar 

  34. Fox, C.J., Hammerman, P.S. & Thompson, C.B. Fuel feeds function: energy metabolism and the T-cell response. Nat. Rev. Immunol. 5, 844–852 (2005).

    Article  CAS  Google Scholar 

  35. Doughty, C.A. et al. Antigen receptor-mediated changes in glucose metabolism in B lymphocytes: role of phosphatidylinositol 3-kinase signaling in the glycolytic control of growth. Blood 107, 4458–4465 (2006).

    Article  CAS  Google Scholar 

  36. Wu, M. et al. Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. Am. J. Physiol. Cell Physiol. 292, C125–C136 (2007).

    Article  CAS  Google Scholar 

  37. MacLennan, I.C. Germinal centers. Annu. Rev. Immunol. 12, 117–139 (1994).

    Article  CAS  Google Scholar 

  38. Fillatreau, S. & Gray, D. T cell accumulation in B cell follicles is regulated by dendritic cells and is independent of B cell activation. J. Exp. Med. 197, 195–206 (2003).

    Article  CAS  Google Scholar 

  39. Finkel, T. Oxidant signals and oxidative stress. Curr. Opin. Cell Biol. 15, 247–254 (2003).

    Article  CAS  Google Scholar 

  40. Kaczmarek, L.K. Non-conducting functions of voltage-gated ion channels. Nat. Rev. Neurosci. 7, 761–771 (2006).

    Article  CAS  Google Scholar 

  41. Meng, T.C., Fukada, T. & Tonks, N.K. Reversible oxidation and inactivation of protein tyrosine phosphatases in vivo. Mol. Cell 9, 387–399 (2002).

    Article  CAS  Google Scholar 

  42. Lopez-Mirabal, H.R. & Winther, J.R. Redox characteristics of the eukaryotic cytosol. Biochim. Biophys. Acta 1783, 629–640 (2008).

    Article  CAS  Google Scholar 

  43. Patterson, H.C., Kraus, M., Kim, Y.M., Ploegh, H. & Rajewsky, K. The B cell receptor promotes B cell activation and proliferation through a non-ITAM tyrosine in the Igα cytoplasmic domain. Immunity 25, 55–65 (2006).

    Article  CAS  Google Scholar 

  44. Zimmermann, S. & Moelling, K. Phosphorylation and regulation of Raf by Akt (protein kinase B). Science 286, 1741–1744 (1999).

    Article  CAS  Google Scholar 

  45. Kodiha, M., Banski, P. & Stochaj, U. Interplay between MEK and PI3 kinase signaling regulates the subcellular localization of protein kinases ERK1/2 and Akt upon oxidative stress. FEBS Lett. 583, 1987–1993 (2009).

    Article  CAS  Google Scholar 

  46. Gottlob, K. et al. Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev. 15, 1406–1418 (2001).

    Article  CAS  Google Scholar 

  47. Jones, R.G. & Thompson, C.B. Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev. 23, 537–548 (2009).

    Article  CAS  Google Scholar 

  48. Kuppers, R. Mechanisms of B-cell lymphoma pathogenesis. Nat. Rev. Cancer 5, 251–262 (2005).

    Article  Google Scholar 

  49. Manders, M.M., Verbeek, P.J. & Aten, J.A. Measurement of co-localization of objects in dual color confocal images. J. Microsc. 169, 375–382 (1993).

    Article  Google Scholar 

  50. Luther, S.A., Gulbranson-Judge, A., Acha-Orbea, H. & MacLennan, I.C. Viral superantigen drives extrafollicular and follicular B cell differentiation leading to virus-specific antibody production. J. Exp. Med. 185, 551–562 (1997).

    Article  CAS  Google Scholar 

  51. Weibel, E. Principles and methods for the morphometric study of the lung and other organs. Lab. Invest. 12, 131–155 (1963).

    CAS  PubMed  Google Scholar 

  52. Xiang, Z. et al. FcγRIIb controls bone marrow plasma cell persistence and apoptosis. Nat. Immunol. 8, 419–429 (2007).

    Article  CAS  Google Scholar 

  53. Chen, J. et al. CD22 attenuates calcium signaling by potentiating plasma membrane calcium-ATPase activity. Nat. Immunol. 5, 651–657 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank U. Klein for discussions; S.-D. Zhang for assistance with statistical analysis; the laboratories of P. Nicotera, G. Cohen, P. Salomoni (Medical Research Council Toxicology Unit) for reagents and discussions; K. Young for help in the acquisition and analysis of data; A. Tobin, I. Forsythe, E. Tulchinsky, M. Kriajevska, E. Raven, J. Basran and K. Brown (University of Leicester) for reagents and use of equipment; F. Batista (Cancer Research UK) and A. Knight (University of Newcastle) for the HEL-specific B cell lines A20 D1.3 and LK35.2 HyHEL10; R. Snowden and K. Topping for assistance with flow cytometry and sorting; and the Medical Research Council (G0802524) for sorter funding. Supported by the Medical Research Council, the Lymphoma Research Foundation (USA), Philip Morris and the US National Institutes of Health (HL-61437).

Author information

Authors and Affiliations

Authors

Contributions

M.C. and M.J.S.D. designed research and wrote the manuscript; E.V., T.E.D., I.C.M.M., K.C. and R.D.G. designed some aspects of research; M.C., M.K.B., T.H., R.S.B., K.C., K.P., B.M., V.V.C., D.M., D.D. and M.K. did experiments; C.L. provided some technical support; E.V., T.E.D., I.C.M.M. and K.C. edited the manuscript; and all authors reviewed and approved the manuscript.

Corresponding author

Correspondence to Martin J S Dyer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–9, Supplementary Table 1 and Supplementary Methods (PDF 1201 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capasso, M., Bhamrah, M., Henley, T. et al. HVCN1 modulates BCR signal strength via regulation of BCR-dependent generation of reactive oxygen species. Nat Immunol 11, 265–272 (2010). https://doi.org/10.1038/ni.1843

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1843

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing