Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

'Unlicensed' natural killer cells dominate the response to cytomegalovirus infection

Abstract

Natural killer (NK) cells expressing inhibitory receptors that bind to self major histocompatibility complex (MHC) class I are 'licensed', or rendered functionally more responsive to stimulation, whereas 'unlicensed' NK cells lacking receptors for self MHC class I are hyporesponsive. Here we show that contrary to the licensing hypothesis, unlicensed NK cells were the main mediators of NK cell–mediated control of mouse cytomegalovirus infection in vivo. Depletion of unlicensed NK cells impaired control of viral titers, but depletion of licensed NK cells did not. The transfer of unlicensed NK cells was more protective than was the transfer of licensed NK cells. Signaling by the tyrosine phosphatase SHP-1 limited the proliferation of licensed NK cells but not that of unlicensed NK cells during infection. Thus, unlicensed NK cells are critical for protection against viral infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: MHC class I inhibition overrides NK cell licensing.
Figure 2: Licensed NK cells become under-represented during MCMV infection.
Figure 3: Ly49C/I is stably expressed and limits the proliferation of NK cells during MCMV infection.
Figure 4: Ly49C/I-mediated inhibition requires functional SHP-1.
Figure 5: Unlicensed NK cells control MCMV infection.
Figure 6: Licensed NK cells do not protect neonates from MCMV infection.

Similar content being viewed by others

References

  1. Lanier, L.L. NK cell recognition. Annu. Rev. Immunol. 23, 225–274 (2005).

    Article  CAS  Google Scholar 

  2. Lanier, L.L. Up on the tightrope: natural killer cell activation and inhibition. Nat. Immunol. 9, 495–502 (2008).

    Article  CAS  Google Scholar 

  3. Binstadt, B.A. et al. Sequential involvement of Lck and SHP-1 with MHC-recognizing receptors on NK cells inhibits FcR-initiated tyrosine kinase activation. Immunity 5, 629–638 (1996).

    Article  CAS  Google Scholar 

  4. Long, E.O. Negative signaling by inhibitory receptors: the NK cell paradigm. Immunol. Rev. 224, 70–84 (2008).

    Article  CAS  Google Scholar 

  5. Nakamura, M.C. et al. Mouse Ly-49A interrupts early signaling events in natural killer cell cytotoxicity and functionally associates with the SHP-1 tyrosine phosphatase. J. Exp. Med. 185, 673–684 (1997).

    Article  CAS  Google Scholar 

  6. Stebbins, C.C. et al. Vav1 dephosphorylation by the tyrosine phosphatase SHP-1 as a mechanism for inhibition of cellular cytotoxicity. Mol. Cell. Biol. 23, 6291–6299 (2003).

    Article  CAS  Google Scholar 

  7. Peterson, M.E. & Long, E.O. Inhibitory receptor signaling via tyrosine phosphorylation of the adaptor Crk. Immunity 29, 578–588 (2008).

    Article  CAS  Google Scholar 

  8. Kim, S. et al. Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature 436, 709–713 (2005).

    Article  CAS  Google Scholar 

  9. Bix, M. et al. Rejection of class I MHC-deficient haemopoietic cells by irradiated MHC-matched mice. Nature 349, 329–331 (1991).

    Article  CAS  Google Scholar 

  10. Fernandez, N.C. et al. A subset of natural killer cells achieves self-tolerance without expressing inhibitory receptors specific for self-MHC molecules. Blood 105, 4416–4423 (2005).

    Article  CAS  Google Scholar 

  11. Anfossi, N. et al. Human NK cell education by inhibitory receptors for MHC class I. Immunity 25, 331–342 (2006).

    Article  CAS  Google Scholar 

  12. Kim, S. et al. HLA alleles determine differences in human natural killer cell responsiveness and potency. Proc. Natl. Acad. Sci. USA 105, 3053–3058 (2008).

    Article  CAS  Google Scholar 

  13. Yawata, M. et al. MHC class I-specific inhibitory receptors and their ligands structure diverse human NK-cell repertoires toward a balance of missing self-response. Blood 112, 2369–2380 (2008).

    Article  CAS  Google Scholar 

  14. Yu, J. et al. Hierarchy of the human natural killer cell response is determined by class and quantity of inhibitory receptors for self-HLA-B and HLA-C ligands. J. Immunol. 179, 5977–5989 (2007).

    Article  CAS  Google Scholar 

  15. Yokoyama, W.M. & Kim, S. Licensing of natural killer cells by self-major histocompatibility complex class I. Immunol. Rev. 214, 143–154 (2006).

    Article  CAS  Google Scholar 

  16. Brodin, P., Lakshmikanth, T., Johansson, S., Karre, K. & Hoglund, P. The strength of inhibitory input during education quantitatively tunes the functional responsiveness of individual natural killer cells. Blood 113, 2434–2441 (2009).

    Article  CAS  Google Scholar 

  17. Johansson, S. et al. Natural killer cell education in mice with single or multiple major histocompatibility complex class I molecules. J. Exp. Med. 201, 1145–1155 (2005).

    Article  CAS  Google Scholar 

  18. Joncker, N.T., Fernandez, N.C., Treiner, E., Vivier, E. & Raulet, D.H. NK cell responsiveness is tuned commensurate with the number of inhibitory receptors for self-MHC class I: the rheostat model. J. Immunol. 182, 4572–4580 (2009).

    Article  CAS  Google Scholar 

  19. Raulet, D.H. & Vance, R.E. Self-tolerance of natural killer cells. Nat. Rev. Immunol. 6, 520–531 (2006).

    Article  CAS  Google Scholar 

  20. Lodoen, M.B. & Lanier, L.L. Natural killer cells as an initial defense against pathogens. Curr. Opin. Immunol. 18, 391–398 (2006).

    Article  CAS  Google Scholar 

  21. Biron, C.A., Byron, K.S. & Sullivan, J.L. Severe herpesvirus infections in an adolescent without natural killer cells. N. Engl. J. Med. 320, 1731–1735 (1989).

    Article  CAS  Google Scholar 

  22. Lodoen, M.B. & Lanier, L.L. Viral modulation of NK cell immunity. Nat. Rev. Microbiol. 3, 59–69 (2005).

    Article  CAS  Google Scholar 

  23. Wagner, M., Gutermann, A., Podlech, J., Reddehase, M.J. & Koszinowski, U.H. Major histocompatibility complex class I allele-specific cooperative and competitive interactions between immune evasion proteins of cytomegalovirus. J. Exp. Med. 196, 805–816 (2002).

    Article  CAS  Google Scholar 

  24. Pinto, A.K., Munks, M.W., Koszinowski, U.H. & Hill, A.B. Coordinated function of murine cytomegalovirus genes completely inhibits CTL lysis. J. Immunol. 177, 3225–3234 (2006).

    Article  CAS  Google Scholar 

  25. Arase, H., Mocarski, E.S., Campbell, A.E., Hill, A.B. & Lanier, L.L. Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science 296, 1323–1326 (2002).

    Article  CAS  Google Scholar 

  26. Smith, H.R. et al. Recognition of a virus-encoded ligand by a natural killer cell activation receptor. Proc. Natl. Acad. Sci. USA 99, 8826–8831 (2002).

    Article  CAS  Google Scholar 

  27. Adam, S.G. et al. Cmv4, a new locus linked to the NK cell gene complex, controls innate resistance to cytomegalovirus in wild-derived mice. J. Immunol. 176, 5478–5485 (2006).

    Article  CAS  Google Scholar 

  28. Desrosiers, M.P. et al. Epistasis between mouse Klra and major histocompatibility complex class I loci is associated with a new mechanism of natural killer cell-mediated innate resistance to cytomegalovirus infection. Nat. Genet. 37, 593–599 (2005).

    Article  CAS  Google Scholar 

  29. Kielczewska, A. et al. Ly49P recognition of cytomegalovirus-infected cells expressing H2-Dk and CMV-encoded m04 correlates with the NK cell antiviral response. J. Exp. Med. 206, 515–523 (2009).

    Article  CAS  Google Scholar 

  30. Daniels, K.A. et al. Murine cytomegalovirus is regulated by a discrete subset of natural killer cells reactive with monoclonal antibody to Ly49H. J. Exp. Med. 194, 29–44 (2001).

    Article  CAS  Google Scholar 

  31. Dokun, A.O. et al. Specific and nonspecific NK cell activation during virus infection. Nat. Immunol. 2, 951–956 (2001).

    Article  CAS  Google Scholar 

  32. Hanke, T. et al. Direct assessment of MHC class I binding by seven Ly49 inhibitory NK cell receptors. Immunity 11, 67–77 (1999).

    Article  CAS  Google Scholar 

  33. Merck, E., Voyle, R.B. & MacDonald, H.R. Ly49D engagement on T lymphocytes induces TCR-independent activation and CD8 effector functions that control tumor growth. J. Immunol. 182, 183–192 (2009).

    Article  CAS  Google Scholar 

  34. Orr, M.T. et al. Ly49H signaling through DAP10 is essential for optimal natural killer cell responses to mouse cytomegalovirus infection. J. Exp. Med. 206, 807–817 (2009).

    Article  CAS  Google Scholar 

  35. Koszinowski, U.H., Del Val, M. & Reddehase, M.J. Cellular and molecular basis of the protective immune response to cytomegalovirus infection. Curr. Top. Microbiol. Immunol. 154, 189–220 (1990).

    CAS  PubMed  Google Scholar 

  36. Tay, C.H., Welsh, R.M. & Brutkiewicz, R.R. NK cell response to viral infections in β2-microglobulin-deficient mice. J. Immunol. 154, 780–789 (1995).

    CAS  PubMed  Google Scholar 

  37. Sun, J.C., Beilke, J.N. & Lanier, L.L. Adaptive immune features of natural killer cells. Nature 457, 557–561 (2009).

    Article  CAS  Google Scholar 

  38. Ziegler, H. et al. A mouse cytomegalovirus glycoprotein retains MHC class I complexes in the ERGIC/cis-Golgi compartments. Immunity 6, 57–66 (1997).

    Article  CAS  Google Scholar 

  39. Reusch, U. et al. A cytomegalovirus glycoprotein re-routes MHC class I complexes to lysosomes for degradation. EMBO J. 18, 1081–1091 (1999).

    Article  CAS  Google Scholar 

  40. Tripathy, S.K., Smith, H.R., Holroyd, E.A., Pingel, J.T. & Yokoyama, W.M. Expression of m157, a murine cytomegalovirus-encoded putative major histocompatibility class I (MHC-I)-like protein, is independent of viral regulation of host MHC-I. J. Virol. 80, 545–550 (2006).

    Article  CAS  Google Scholar 

  41. Wu, M.F. & Raulet, D.H. Class I-deficient hemopoietic cells and nonhemopoietic cells dominantly induce unresponsiveness of natural killer cells to class I-deficient bone marrow cell grafts. J. Immunol. 158, 1628–1633 (1997).

    CAS  PubMed  Google Scholar 

  42. Sun, J.C. & Lanier, L.L. Cutting edge: viral infection breaks NK cell tolerance to “missing self”. J. Immunol. 181, 7453–7457 (2008).

    Article  CAS  Google Scholar 

  43. Sun, J.C. & Lanier, L.L. Tolerance of NK cells encountering their viral ligand during development. J. Exp. Med. 205, 1819–1828 (2008).

    Article  CAS  Google Scholar 

  44. Tripathy, S.K. et al. Continuous engagement of a self-specific activation receptor induces NK cell tolerance. J. Exp. Med. 205, 1829–1841 (2008).

    Article  CAS  Google Scholar 

  45. Velardi, A. Role of KIRs and KIR ligands in hematopoietic transplantation. Curr. Opin. Immunol. 20, 581–587 (2008).

    Article  CAS  Google Scholar 

  46. Clausen, J. et al. Impact of natural killer cell dose and donor killer-cell immunoglobulin-like receptor (KIR) genotype on outcome following human leucocyte antigen-identical haematopoietic stem cell transplantation. Clin. Exp. Immunol. 148, 520–528 (2007).

    Article  CAS  Google Scholar 

  47. Hsu, K.C. et al. Improved outcome in HLA-identical sibling hematopoietic stem-cell transplantation for acute myelogenous leukemia predicted by KIR and HLA genotypes. Blood 105, 4878–4884 (2005).

    Article  CAS  Google Scholar 

  48. Miller, J.S. et al. Missing KIR ligands are associated with less relapse and increased graft-versus-host disease (GVHD) following unrelated donor allogeneic HCT. Blood 109, 5058–5061 (2007).

    Article  CAS  Google Scholar 

  49. Sobecks, R.M. et al. Survival of AML patients receiving HLA-matched sibling donor allogeneic bone marrow transplantation correlates with HLA-Cw ligand groups for killer immunoglobulin-like receptors. Bone Marrow Transplant. 39, 417–424 (2007).

    Article  CAS  Google Scholar 

  50. Yu, J. et al. Breaking tolerance to self, circulating natural killer cells expressing inhibitory KIR for non-self HLA exhibit effector function after T cell-depleted allogeneic hematopoietic cell transplantation. Blood 113, 3875–3884 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Jarjoura for assistance with cell sorting; H. Consengco for assistance with retroviral transduction; H. Robson MacDonald (Ludwig Institute for Cancer Research) for RMA–Hm1-C4 cells; S. Vidal (McGill University) for Ly49H-deficient B6 mice; C. Lowell (University of California, San Francisco) for Me-v B6 mice; and J. Beilke and D. Hesslein for critical reading of the manuscript. Supported by the Cancer Research Institute (M.T.O.), the National Institutes of Health (AI066897) and the American Cancer Society (L.L.L.).

Author information

Authors and Affiliations

Authors

Contributions

M.T.O. planned and did experiments and wrote the manuscript; W.J.M. contributed to experimental design and provide essential reagents; and L.L.L. contributed to experimental design, data evaluation and writing of the manuscript.

Corresponding author

Correspondence to Lewis L Lanier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orr, M., Murphy, W. & Lanier, L. 'Unlicensed' natural killer cells dominate the response to cytomegalovirus infection. Nat Immunol 11, 321–327 (2010). https://doi.org/10.1038/ni.1849

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1849

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing