Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The T helper type 2 response to cysteine proteases requires dendritic cell–basophil cooperation via ROS-mediated signaling

Abstract

The mechanisms that initiate T helper type 2 (TH2) responses are poorly understood. Here we demonstrate that cysteine protease–induced TH2 responses occur via 'cooperation' between migratory dermal dendritic cells (DCs) and basophils positive for interleukin 4 (IL-4). Subcutaneous immunization with papain plus antigen induced reactive oxygen species (ROS) in lymph node DCs and in dermal DCs and epithelial cells of the skin. ROS orchestrated TH2 responses by inducing oxidized lipids that triggered the induction of thymic stromal lymphopoietin (TSLP) by epithelial cells mediated by Toll-like receptor 4 (TLR4) and the adaptor protein TRIF; by suppressing production of the TH1-inducing molecules IL-12 and CD70 in lymph node DCs; and by inducing the DC-derived chemokine CCL7, which mediated recruitment of IL-4+ basophils to the lymph node. Thus, the TH2 response to cysteine proteases requires DC-basophil cooperation via ROS-mediated signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Vital role of DCs in papain-induced TH2 responses.
Figure 2: DCs and basophils act in concert to drive TH2 responses.
Figure 3: ROS production by papain-activated DCs is critical for TH2 differentiation.
Figure 4: TSLP production in skin in response to immunization with papain is dependent on ROS.
Figure 5: Papain-induced TH2 responses are dependent on TLR4-TRIF signaling.
Figure 6: Regulation of basophil migration by ROS, TLR4 and TRIF signaling in DCs.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Mosmann, T.R. & Coffman, R.L. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 7, 145–173 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Zhu, J., Yamane, H. & Paul, W.E. Differentiation of effector CD4 T cell populations. Annu. Rev. Immunol. 28, 445–489 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Korn, T., Bettelli, E., Oukka, M. & Kuchroo, V.K. IL-17 and Th17 Cells. Annu. Rev. Immunol. 27, 485–517 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Steinman, R.M. & Banchereau, J. Taking dendritic cells into medicine. Nature 449, 419–426 (2007).

    Article  CAS  PubMed  Google Scholar 

  5. Steinman, R.M. Dendritic cells in vivo: a key target for a new vaccine science. Immunity 29, 319–324 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Heath, W.R. & Carbone, F.R. Dendritic cell subsets in primary and secondary T cell responses at body surfaces. Nat. Immunol. 10, 1237–1244 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Kawai, T. & Akira, S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat. Immunol. 11, 373–384 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Urban, J.F. Jr. et al. The importance of Th2 cytokines in protective immunity to nematodes. Immunol. Rev. 127, 205–220 (1992).

    Article  CAS  PubMed  Google Scholar 

  9. Khodoun, M.V., Orekhova, T., Potter, C., Morris, S. & Finkelman, F.D. Basophils initiate IL-4 production during a memory T-dependent response. J. Exp. Med. 200, 857–870 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Denzel, A. et al. Basophils enhance immunological memory responses. Nat. Immunol. 9, 733–742 (2008).

    CAS  PubMed  Google Scholar 

  11. Galli, S.J., Nakae, S. & Tsai, M. Mast cells in the development of adaptive immune responses. Nat. Immunol. 6, 135–142 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Min, B. & Paul, W.E. Basophils: in the spotlight at last. Nat. Immunol. 9, 223–225 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Min, B. et al. Basophils produce IL-4 and accumulate in tissues after infection with a Th2-inducing parasite. J. Exp. Med. 200, 507–517 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yoshimoto, T. et al. Basophils contribute to TH2-IgE responses in vivo via IL-4 production and presentation of peptide-MHC class II complexes to CD4+ T cells. Nat. Immunol. 10, 706–712 (2009).

    Article  CAS  PubMed  Google Scholar 

  15. Sokol, C.L. et al. Basophils function as antigen-presenting cells for an allergen-induced T helper type 2 response. Nat. Immunol. 10, 713–720 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Perrigoue, J.G. et al. MHC class II-dependent basophil-CD4+ T cell interactions promote TH2 cytokine-dependent immunity. Nat. Immunol. 10, 697–705 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dillon, S. et al. A Toll-like receptor 2 ligand stimulates Th2 responses in vivo, via induction of extracellular signal-regulated kinase mitogen-activated protein kinase and c-Fos in dendritic cells. J. Immunol. 172, 4733–4743 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Redecke, V. et al. Cutting edge: activation of Toll-like receptor 2 induces a Th2 immune response and promotes experimental asthma. J. Immunol. 172, 2739–2743 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Eisenbarth, S.C. et al. Lipopolysaccharide-enhanced, Toll-like receptor 4-dependent T helper cell type 2 responses to inhaled antigen. J. Exp. Med. 196, 1645–1651 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang, D. et al. Eosinophil-derived neurotoxin acts as an alarmin to activate the TLR2-MyD88 signal pathway in dendritic cells and enhances Th2 immune responses. J. Exp. Med. 205, 79–90 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fritz, J.H. et al. Nod1-mediated innate immune recognition of peptidoglycan contributes to the onset of adaptive immunity. Immunity 26, 445–459 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Maldonado-Lopez, R. et al. CD8α+ and CD8α subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J. Exp. Med. 189, 587–592 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pulendran, B. et al. Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proc. Natl. Acad. Sci. USA 96, 1036–1041 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kapsenberg, M.L. Dendritic-cell control of pathogen-driven T-cell polarization. Nat. Rev. Immunol. 3, 984–993 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. van Rijt, L.S. et al. In vivo depletion of lung CD11c+ dendritic cells during allergen challenge abrogates the characteristic features of asthma. J. Exp. Med. 201, 981–991 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sokol, C.L., Barton, G.M., Farr, A.G. & Medzhitov, R. A mechanism for the initiation of allergen-induced T helper type 2 responses. Nat. Immunol. 9, 310–318 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jung, S. et al. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 17, 211–220 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Allan, R.S. et al. Migratory dendritic cells transfer antigen to a lymph node-resident dendritic cell population for efficient CTL priming. Immunity 25, 153–162 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Mohrs, M., Shinkai, K., Mohrs, K. & Locksley, R.M. Analysis of type 2 immunity in vivo with a bicistronic IL-4 reporter. Immunity 15, 303–311 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Itano, A.A. et al. Distinct dendritic cell populations sequentially present antigen to CD4 T cells and stimulate different aspects of cell-mediated immunity. Immunity 19, 47–57 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Kissenpfennig, A. et al. Dynamics and function of Langerhans cells in vivo: dermal dendritic cells colonize lymph node areas distinct from slower migrating Langerhans cells. Immunity 22, 643–654 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Bursch, L.S. et al. Identification of a novel population of Langerin+ dendritic cells. J. Exp. Med. 204, 3147–3156 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Henri, S. et al. The dendritic cell populations of mouse lymph nodes. J. Immunol. 167, 741–748 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Poulin, L.F. et al. The dermis contains langerin+ dendritic cells that develop and function independently of epidermal Langerhans cells. J. Exp. Med. 204, 3119–3131 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ginhoux, F. et al. Blood-derived dermal langerin+ dendritic cells survey the skin in the steady state. J. Exp. Med. 204, 3133–3146 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bedoui, S. et al. Cross-presentation of viral and self antigens by skin-derived CD103+ dendritic cells. Nat. Immunol. 10, 488–495 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Bird, J.J. et al. Helper T cell differentiation is controlled by the cell cycle. Immunity 9, 229–237 (1998).

    Article  CAS  PubMed  Google Scholar 

  38. Bedard, K. & Krause, K.H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev. 87, 245–313 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Binder, C.J. et al. Innate and acquired immunity in atherogenesis. Nat. Med. 8, 1218–1226 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Imai, Y. et al. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell 133, 235–249 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Riedl, M.A. & Nel, A.E. Importance of oxidative stress in the pathogenesis and treatment of asthma. Curr. Opin. Allergy Clin. Immunol. 8, 49–56 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Gelderman, K.A. et al. Macrophages suppress T cell responses and arthritis development in mice by producing reactive oxygen species. J. Clin. Invest. 117, 3020–3028 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Abbas, A.K., Murphy, K.M. & Sher, A. Functional diversity of helper T lymphocytes. Nature 383, 787–793 (1996).

    Article  CAS  PubMed  Google Scholar 

  44. Soares, H. et al. A subset of dendritic cells induces CD4+ T cells to produce IFN-γ by an IL-12-independent but CD70-dependent mechanism in vivo. J. Exp. Med. 204, 1095–1106 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cao, W. et al. Toll-like receptor-mediated induction of type I interferon in plasmacytoid dendritic cells requires the rapamycin-sensitive PI(3)K-mTOR-p70S6K pathway. Nat. Immunol. 9, 1157–1164 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Heffernan, M.J., Kasturi, S.P., Yang, S.C., Pulendran, B. & Murthy, N. The stimulation of CD8+ T cells by dendritic cells pulsed with polyketal microparticles containing ion-paired protein antigen and poly(inosinic acid)-poly(cytidylic acid). Biomaterials 30, 910–918 (2009).

    Article  CAS  PubMed  Google Scholar 

  47. Liu, Y.J. et al. TSLP: an epithelial cell cytokine that regulates T cell differentiation by conditioning dendritic cell maturation. Annu. Rev. Immunol. 25, 193–219 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Ziegler, S.F. & Liu, Y.J. Thymic stromal lymphopoietin in normal and pathogenic T cell development and function. Nat. Immunol. 7, 709–714 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Kundu, K. et al. Hydrocyanines: a class of fluorescent sensors that can image reactive oxygen species in cell culture, tissue, and in vivo. Angew. Chem. Int. Edn Engl. 48, 299–303 (2009).

    Article  CAS  Google Scholar 

  50. Miller, Y.I., Chang, M.K., Binder, C.J., Shaw, P.X. & Witztum, J.L. Oxidized low density lipoprotein and innate immune receptors. Curr. Opin. Lipidol. 14, 437–445 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Miller, Y.I. et al. Minimally modified LDL binds to CD14, induces macrophage spreading via TLR4/MD-2, and inhibits phagocytosis of apoptotic cells. J. Biol. Chem. 278, 1561–1568 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Dahinden, C.A. et al. Monocyte chemotactic protein 3 is a most effective basophil- and eosinophil-activating chemokine. J. Exp. Med. 179, 751–756 (1994).

    Article  CAS  PubMed  Google Scholar 

  53. Bogunovic, M. et al. Identification of a radio-resistant and cycling dermal dendritic cell population in mice and men. J. Exp. Med. 203, 2627–2638 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Niu, N., Laufer, T., Homer, R.J. & Cohn, L. Cutting edge: limiting MHC class II expression to dendritic cells alters the ability to develop Th2-dependent allergic airway inflammation. J. Immunol. 183, 1523–1527 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Allenspach, E.J., Lemos, M.P., Porrett, P.M., Turka, L.A. & Laufer, T.M. Migratory and lymphoid-resident dendritic cells cooperate to efficiently prime naive CD4 T cells. Immunity 29, 795–806 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Nakamura, Y. et al. Cigarette smoke extract induces thymic stromal lymphopoietin expression, leading to TH2-type immune responses and airway inflammation. J. Allergy Clin. Immunol. 122, 1208–1214 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Zhai, Y. et al. Cutting edge: TLR4 activation mediates liver ischemia/reperfusion inflammatory response via IFN regulatory factor 3-dependent MyD88-independent pathway. J. Immunol. 173, 7115–7119 (2004).

    Article  CAS  PubMed  Google Scholar 

  58. McGowen, A.L., Hale, L.P., Shelburne, C.P., Abraham, S.N. & Staats, H.F. The mast cell activator compound 48/80 is safe and effective when used as an adjuvant for intradermal immunization with Bacillus anthracis protective antigen. Vaccine 27, 3544–3552 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S.A. Mertens, L. Bronner and Y. Wang for assistance with cell sorting; Y. Wang, D. Levesque and D. Bonenberger for assistance with the maintenance of mice at the Emory Vaccine Center vivarium; S. Akira (Osaka University) for Tlr2−/−, Tlr3−/−, Tlr4−/−, Tlr6−/−, Tlr7−/−, Tlr9−/−, Myd88−/− and Ticam1lps−2/lps−2 mice; V. Dixit (Genentech) for Nalp3−/−, Ipaf−/− and Asc−/− mice; K.A. Hogquist (University of Minnesota) for Langerin-EGFP-DTR mice; and J. Witztum (University of California at San Diego) for EO6. Supported by the National Institutes of Health (U54AI057157, R37AI48638, R01DK057665, U19AI057266, HHSN266 200700006C, N01 AI50019, N01 AI50025) and the Bill & Melinda Gates Foundation.

Author information

Authors and Affiliations

Authors

Contributions

H.T. and B.P. designed experiments; H.T. did experiments; R.R. and W.C. assisted with experiments; S.P.K. K.K. and N.M. designed microparticles and assisted with ROS imaging; T.B.K. and H.L.N. assisted with data analyses.; B.M. provided mice; and H.T. and B.P. wrote the manuscript.

Corresponding author

Correspondence to Bali Pulendran.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–19 (PDF 1491 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, H., Cao, W., Kasturi, S. et al. The T helper type 2 response to cysteine proteases requires dendritic cell–basophil cooperation via ROS-mediated signaling. Nat Immunol 11, 608–617 (2010). https://doi.org/10.1038/ni.1883

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1883

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing