Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm

Abstract

Plasticity is a hallmark of cells of the myelomonocytic lineage. In response to innate recognition or signals from lymphocyte subsets, mononuclear phagocytes undergo adaptive responses. Shaping of monocyte-macrophage function is an essential component of resistance to pathogens, tissue damage and repair. The orchestration of myelomonocytic cell function is a key element that links inflammation and cancer and provides a paradigm for macrophage plasticity and function. A better understanding of the molecular basis of myelomonocytic cell plasticity will open new vistas in immunopathology and therapeutic intervention.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The orchestration of macrophage activation and polarization by lymphoid cells.
Figure 2: Molecular pathways of macrophage polarization.
Figure 3: The yin-yang of myelomonocytic cells in tumor progression and their regulation by lymphoid cells.

Similar content being viewed by others

References

  1. Gordon, S. & Martinez, F.O. Alternative activation of macrophages: mechanism and functions. Immunity 32, 593–604 (2010).

    CAS  PubMed  Google Scholar 

  2. Geissmann, F. et al. Development of monocytes, macrophages, and dendritic cells. Science 327, 656–661 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Gordon, S. & Taylor, P.R. Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 5, 953–964 (2005).

    CAS  PubMed  Google Scholar 

  4. Mantovani, A., Sozzani, S., Locati, M., Allavena, P. & Sica, A. Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 23, 549–555 (2002). Original review proposing that M1 and M2 polarization mirrors T H 1 and T H 2 cells.

    Article  CAS  PubMed  Google Scholar 

  5. Cassatella, M.A., Locati, M. & Mantovani, A. Never underestimate the power of a neutrophil. Immunity 31, 698–700 (2009).

    CAS  PubMed  Google Scholar 

  6. Gabrilovich, D.I. & Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 9, 162–174 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Bowdish, D.M., Loffredo, M.S., Mukhopadhyay, S., Mantovani, A. & Gordon, S. Macrophage receptors implicated in the 'adaptive' form of innate immunity. Microbes Infect. 9, 1680–1687 (2007).

    CAS  PubMed  Google Scholar 

  8. Mantovani, A. From phagocyte diversity and activation to probiotics: back to Metchnikoff. Eur. J. Immunol. 38, 3269–3273 (2008).

    CAS  PubMed  Google Scholar 

  9. Willment, J.A. et al. Dectin-1 expression and function are enhanced on alternatively activated and GM-CSF-treated macrophages and are negatively regulated by IL-10, dexamethasone, and lipopolysaccharide. J. Immunol. 171, 4569–4573 (2003).

    CAS  PubMed  Google Scholar 

  10. Biswas, S.K. & Lopez-Collazo, E. Endotoxin tolerance: new mechanisms, molecules and clinical significance. Trends Immunol. 30, 475–487 (2009).

    CAS  PubMed  Google Scholar 

  11. Foster, S.L., Hargreaves, D.C. & Medzhitov, R. Gene-specific control of inflammation by TLR-induced chromatin modifications. Nature 447, 972–978 (2007).

    CAS  PubMed  Google Scholar 

  12. Porta, C. et al. Tolerance and M2 (alternative) macrophage polarization are related processes orchestrated by p50 nuclear factor κB. Proc. Natl. Acad. Sci. USA 106, 14978–14983 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Bottazzi, B., Doni, A., Garlanda, C. & Mantovani, A. An integrated view of humoral innate immunity: pentraxins as a paradigm. Annu. Rev. Immunol. 28, 157–183 (2010).

    CAS  PubMed  Google Scholar 

  14. Jeannin, P. et al. Complexity and complementarity of outer membrane protein A recognition by cellular and humoral innate immunity receptors. Immunity 22, 551–560 (2005).

    CAS  PubMed  Google Scholar 

  15. Deban, L. et al. Regulation of leukocyte recruitment by the long pentraxin PTX3. Nat. Immunol. 11, 328–334 (2010).

    CAS  PubMed  Google Scholar 

  16. Stein, M., Keshav, S., Harris, N. & Gordon, S. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J. Exp. Med. 176, 287–292 (1992). First publication to describe the concept of alternative activation of macrophages.

    CAS  PubMed  Google Scholar 

  17. Martinez, F.O., Gordon, S., Locati, M. & Mantovani, A. Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J. Immunol. 177, 7303–7311 (2006). Comprehensive transcriptiomal characterization of the differentiation and polarization of human monocytes-macrophages.

    CAS  PubMed  Google Scholar 

  18. Gleissner, C.A., Shaked, I., Little, K.M. & Ley, K. CXC chemokine ligand 4 induces a unique transcriptome in monocyte-derived macrophages. J. Immunol. 184, 4810–4818 (2010).

    CAS  PubMed  Google Scholar 

  19. Roca, H. et al. CCL2 and interleukin-6 promote survival of human CD11b+ peripheral blood mononuclear cells and induce M2-type macrophage polarization. J. Biol. Chem. 284, 34342–34354 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Puig-Kroger, A. et al. Folate receptor β is expressed by tumor-associated macrophages and constitutes a marker for M2 anti-inflammatory/regulatory macrophages. Cancer Res. 69, 9395–9403 (2009).

    PubMed  Google Scholar 

  21. Recalcati, S. et al. Differential regulation of iron homeostasis during human macrophage polarized activation. Eur. J. Immunol. 40, 824–835 (2010).

    CAS  PubMed  Google Scholar 

  22. Rodriguez-Prados, J.C. et al. Substrate fate in activated macrophages: a comparison between innate, classic, and alternative activation. J. Immunol. 185, 605–614 (2010).

    CAS  PubMed  Google Scholar 

  23. Mantovani, A. et al. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25, 677–686 (2004).

    CAS  PubMed  Google Scholar 

  24. Biswas, S.K. et al. A distinct and unique transcriptional program expressed by tumor-associated macrophages (defective NF-kappaB and enhanced IRF-3/STAT1 activation). Blood 107, 2112–2122 (2006). One of the first transcriptomal studies of tumor-associated macrophages showing their molecular characterization and distinct regulation in the TLR4 pathway.

    CAS  PubMed  Google Scholar 

  25. Gustafsson, C. et al. Gene expression profiling of human decidual macrophages: evidence for immunosuppressive phenotype. PLoS ONE 3, e2078 (2008).

    PubMed  PubMed Central  Google Scholar 

  26. Odegaard, J.I. et al. Macrophage-specific PPARγ controls alternative activation and improves insulin resistance. Nature 447, 1116–1120 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Rae, F. et al. Characterisation and trophic functions of murine embryonic macrophages based upon the use of a Csf1r-EGFP transgene reporter. Dev. Biol. 308, 232–246 (2007).

    CAS  PubMed  Google Scholar 

  28. Auffray, C. et al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 317, 666–670 (2007). Seminal study reporting the phenotype and function of the inflammatory and patrolling monocyte subsets in mice.

    CAS  PubMed  Google Scholar 

  29. Raes, G. et al. Macrophage galactose-type C-type lectins as novel markers for alternatively activated macrophages elicited by parasitic infections and allergic airway inflammation. J. Leukoc. Biol. 77, 321–327 (2005).

    CAS  PubMed  Google Scholar 

  30. Chan, G., Bivins-Smith, E.R., Smith, M.S., Smith, P.M. & Yurochko, A.D. Transcriptome analysis reveals human cytomegalovirus reprograms monocyte differentiation toward an M1 macrophage. J. Immunol. 181, 698–711 (2008).

    CAS  PubMed  Google Scholar 

  31. Shaul, M.E., Bennett, G., Strissel, K.J., Greenberg, A.S. & Obin, M.S. Dynamic, M2-like remodeling phenotypes of CD11c+ adipose tissue macrophages during high-fat diet–induced obesity in mice. Diabetes 59, 1171–1181 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kadl, A. et al. Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2. Circ. Res. published online, doi:10.1161/CIRCRESAHA.109.215715 (22 July 2010).

  33. Biswas, S.K., Sica, A. & Lewis, C.E. Plasticity of macrophage function during tumor progression: regulation by distinct molecular mechanisms. J. Immunol. 180, 2011–2017 (2008).

    CAS  PubMed  Google Scholar 

  34. Lumeng, C.N., Bodzin, J.L. & Saltiel, A.R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117, 175–184 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Mosser, D.M. & Edwards, J.P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8, 958–969 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Li, C., Houser, B.L., Nicotra, M.L. & Strominger, J.L. HLA-G homodimer-induced cytokine secretion through HLA-G receptors on human decidual macrophages and natural killer cells. Proc. Natl. Acad. Sci. USA 106, 5767–5772 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Vacca, P. et al. Crosstalk between decidual NK and CD14+ myelomonocytic cells results in induction of Tregs and immunosuppression. Proc. Natl. Acad. Sci. USA 7, 11918–11923 (2010).

    Google Scholar 

  38. Loke, P. et al. IL-4 dependent alternatively-activated macrophages have a distinctive in vivo gene expression phenotype. BMC Immunol. 3, 7 (2002).

    PubMed  PubMed Central  Google Scholar 

  39. Welch, J.S. et al. TH2 cytokines and allergic challenge induce Ym1 expression in macrophages by a STAT6-dependent mechanism. J. Biol. Chem. 277, 42821–42829 (2002).

    CAS  PubMed  Google Scholar 

  40. Van den Bossche, J. et al. Alternatively activated macrophages engage in homotypic and heterotypic interactions through IL-4 and polyamine-induced E-cadherin/catenin complexes. Blood 114, 4664–4674 (2009).

    CAS  PubMed  Google Scholar 

  41. Hazlett, L.D. et al. IL-33 shifts macrophage polarization, promoting resistance against Pseudomonas aeruginosa keratitis. Invest. Ophthalmol. Vis. Sci. 51, 1524–1532 (2010).

    PubMed  PubMed Central  Google Scholar 

  42. Kurowska-Stolarska, M. et al. IL-33 amplifies the polarization of alternatively activated macrophages that contribute to airway inflammation. J. Immunol. 183, 6469–6477 (2009).

    CAS  PubMed  Google Scholar 

  43. Pesce, J. et al. The IL-21 receptor augments Th2 effector function and alternative macrophage activation. J. Clin. Invest. 116, 2044–2055 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Solinas, G. et al. Tumor-conditioned macrophages secrete migration-stimulating factor: a new marker for M2-polarization, influencing tumor cell motility. J. Immunol. 185, 642–652 (2010).

    CAS  PubMed  Google Scholar 

  45. Schmidt, T. & Carmeliet, P. Blood-vessel formation: bridges that guide and unite. Nature 465, 697–699 (2010).

    CAS  PubMed  Google Scholar 

  46. Murdoch, C., Muthana, M., Coffelt, S.B. & Lewis, C.E. The role of myeloid cells in the promotion of tumour angiogenesis. Nat. Rev. Cancer 8, 618–631 (2008).

    CAS  PubMed  Google Scholar 

  47. Lin, E.Y. et al. Macrophages regulate the angiogenic switch in a mouse model of breast cancer. Cancer Res. 66, 11238–11246 (2006).

    CAS  PubMed  Google Scholar 

  48. Fantin, A. et al. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116, 829–840 (2010). Study describing the crucial role of macrophages in vascular anastomosis and in developmental angiogenesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Pucci, F. et al. A distinguishing gene signature shared by tumor-infiltrating Tie2-expressing monocytes, blood 'resident' monocytes, and embryonic macrophages suggests common functions and developmental relationships. Blood 114, 901–914 (2009). Seminal study reporting the first transcriptomal characterization of Tie-2 expressing monocytes, a new population of proangiogenic monocytes in the peripheral blood and in tumors, as well as comprehensive gene-expression profiling reporting their relationship with tumor-associated macrophages, embryonic macrophages and blood resident monocytes.

    CAS  PubMed  Google Scholar 

  50. Neill, D.R. et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature 464, 1367–1370 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Price, A.E. et al. Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc. Natl. Acad. Sci. USA (2010).

  52. Saenz, S.A. et al. IL25 elicits a multipotent progenitor cell population that promotes TH2 cytokine responses. Nature 464, 1362–1366 (2010). The three seminal papers above identified for the first time a new innate IL-13-expressing cell population that mediates T H 2 immunity.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Varol, C., Zigmond, E. & Jung, S. Securing the immune tightrope: mononuclear phagocytes in the intestinal lamina propria. Nat. Rev. Immunol. 10, 415–426 (2010).

    CAS  PubMed  Google Scholar 

  54. Junttila, I.S. et al. Tuning sensitivity to IL-4 and IL-13: differential expression of IL-4Rα, IL-13Rα1, and γc regulates relative cytokine sensitivity. J. Exp. Med. 205, 2595–2608 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Chiaramonte, M.G. et al. Regulation and function of the interleukin 13 receptor α2 during a T helper cell type 2-dominant immune response. J. Exp. Med. 197, 687–701 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Sinha, P., Clements, V.K. & Ostrand-Rosenberg, S. Interleukin-13-regulated M2 macrophages in combination with myeloid suppressor cells block immune surveillance against metastasis. Cancer Res. 65, 11743–11751 (2005).

    CAS  PubMed  Google Scholar 

  57. Ishii, M. et al. Epigenetic regulation of the alternatively activated macrophage phenotype. Blood 114, 3244–3254 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. De Santa, F. et al. The histone H3 lysine-27 demethylase Jmjd3 links inflammation to inhibition of polycomb-mediated gene silencing. Cell 130, 1083–1094 (2007).

    CAS  PubMed  Google Scholar 

  59. Satoh, T. et al. The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat. Immunol. (in the press). The three provocative papers above presented some of the first insights into the epigenetic regulation and the central role of JMJD3 in macrophage polarization.

  60. Tiemessen, M.M. et al. CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages. Proc. Natl. Acad. Sci. USA 104, 19446–19451 (2007). Some of the first direct evidence of macrophage polarization driven by T reg cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Liu, G. et al. Phenotypic and functional switch of macrophages induced by regulatory CD4+CD25+ T cells in mice. Immunol. Cell Biol. published online, doi:10.1038/icb.2010.70 (1 June 2010).

    PubMed  Google Scholar 

  62. Savage, N.D. et al. Human anti-inflammatory macrophages induce Foxp3+GITR+CD25+ regulatory T cells, which suppress via membrane-bound TGFβ-1. J. Immunol. 181, 2220–2226 (2008).

    CAS  PubMed  Google Scholar 

  63. Curiel, T.J. et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat. Med. 10, 942–949 (2004).

    CAS  PubMed  Google Scholar 

  64. Butti, E. et al. IL4 gene delivery to the CNS recruits regulatory T cells and induces clinical recovery in mouse models of multiple sclerosis. Gene Ther. 15, 504–515 (2008).

    CAS  PubMed  Google Scholar 

  65. Said, E.A. et al. Programmed death-1-induced interleukin-10 production by monocytes impairs CD4+ T cell activation during HIV infection. Nat. Med. 16, 452–459 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Charles, K.A. et al. The tumor-promoting actions of TNF-α involve TNFR1 and IL-17 in ovarian cancer in mice and humans. J. Clin. Invest. 119, 3011–3023 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Shahrara, S., Pickens, S.R., Dorfleutner, A. & Pope, R.M. IL-17 induces monocyte migration in rheumatoid arthritis. J. Immunol. 182, 3884–3891 (2009).

    CAS  PubMed  Google Scholar 

  68. Jovanovic, D.V. et al. IL-17 stimulates the production and expression of proinflammatory cytokines, IL-β and TNF-α, by human macrophages. J. Immunol. 160, 3513–3521 (1998).

    CAS  PubMed  Google Scholar 

  69. Sutterwala, F.S., Noel, G.J., Salgame, P. & Mosser, D.M. Reversal of proinflammatory responses by ligating the macrophage Fcγ receptor type I. J. Exp. Med. 188, 217–222 (1998). First study showing that direct role of FcγR signaling in inducing a M2-like (IL-12loIL-10hi) polarization of macrophages.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Sironi, M. et al. Differential regulation of chemokine production by Fcγ receptor engagement in human monocytes: association of CCL1 with a distinct form of M2 monocyte activation (M2b, type 2). J. Leukoc. Biol. 80, 342–349 (2006).

    CAS  PubMed  Google Scholar 

  71. Wang, L. et al. Indirect inhibition of Toll-like receptor and type I interferon responses by ITAM-coupled receptors and integrins. Immunity 32, 518–530 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhang, Y. et al. Immune complex/Ig negatively regulate TLR4-triggered inflammatory response in macrophages through FcγRIIb-dependent PGE2 production. J. Immunol. 182, 554–562 (2009).

    CAS  PubMed  Google Scholar 

  73. Gary-Gouy, H. et al. Human CD5 promotes B-cell survival through stimulation of autocrine IL-10 production. Blood 100, 4537–4543 (2002).

    CAS  PubMed  Google Scholar 

  74. Wong, S.C. et al. Macrophage polarization to a unique phenotype driven by B cells. Eur. J. Immunol. 40, 2296–2307 (2010).

    CAS  PubMed  Google Scholar 

  75. Mantovani, A., Allavena, P., Sica, A. & Balkwill, F. Cancer-related inflammation. Nature 454, 436–444 (2008).

    CAS  PubMed  Google Scholar 

  76. Pollard, J.W. Trophic macrophages in development and disease. Nat. Rev. Immunol. 9, 259–270 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Lewis, C.E. & Pollard, J.W. Distinct role of macrophages in different tumor microenvironments. Cancer Res. 66, 605–612 (2006).

    CAS  PubMed  Google Scholar 

  78. Sica, A. & Bronte, V. Altered macrophage differentiation and immune dysfunction in tumor development. J. Clin. Invest. 117, 1155–1166 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Hagemann, T. et al. 'Re-educating' tumor-associated macrophages by targeting NF-κB. J. Exp. Med. 205, 1261–1268 (2008). Remarkable study demonstrating how NF-κB orchestrates the tumor promoting phenotype of TAMs and how these cells can be reeducated.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Torroella-Kouri, M. et al. Identification of a subpopulation of macrophages in mammary tumor-bearing mice that are neither M1 nor M2 and are less differentiated. Cancer Res. 69, 4800–4809 (2009).

    CAS  PubMed  Google Scholar 

  81. Sierra, J.R. et al. Tumor angiogenesis and progression are enhanced by Sema4D produced by tumor-associated macrophages. J. Exp. Med. 205, 1673–1685 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Loges, S. et al. Malignant cells fuel tumor growth by educating infiltrating leukocytes to produce the mitogen Gas6. Blood 115, 2264–2273 (2010).

    CAS  PubMed  Google Scholar 

  83. Movahedi, K. et al. Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6Chigh monocytes. Cancer Res. 70, 5728–5739 (2010).

    CAS  PubMed  Google Scholar 

  84. Karin, M., Lawrence, T. & Nizet, V. Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell 124, 823–835 (2006).

    CAS  PubMed  Google Scholar 

  85. Reimann, M. et al. Tumor stroma-derived TGF-β limits myc-driven lymphomagenesis via Suv39h1-dependent senescence. Cancer Cell 17, 262–272 (2010).

    CAS  PubMed  Google Scholar 

  86. Clear, A.J. et al. Increased angiogenic sprouting in poor prognosis FL is associated with elevated numbers of CD163+ macrophages within the immediate sprouting microenvironment. Blood 115, 5053–5056 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Kuang, D.M. et al. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J. Exp. Med. 206, 1327–1337 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Lin, E.Y., Nguyen, A.V., Russell, R.G. & Pollard, J.W. Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J. Exp. Med. 193, 727–740 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Jaiswal, S. et al. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 138, 271–285 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Hagemann, T. et al. Ovarian cancer cells polarize macrophages toward a tumor-associated phenotype. J. Immunol. 176, 5023–5032 (2006).

    CAS  PubMed  Google Scholar 

  91. Steidl, C. et al. Tumor-associated macrophages and survival in classic Hodgkin's lymphoma. N. Engl. J. Med. 362, 875–885 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. DeNardo, D.G. et al. CD4+ T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 16, 91–102 (2009). Provocative study identifying the role of CD4+ T cells in 'educating' macrophages to promote tumor metastasis involving an IL-4-mediated pathway.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Gocheva, V. et al. IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev. 24, 241–255 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang, J.P. et al. Increased intratumoral IL-17-producing cells correlate with poor survival in hepatocellular carcinoma patients. J. Hepatol. 50, 980–989 (2009).

    CAS  PubMed  Google Scholar 

  95. Wang, L. et al. IL-17 can promote tumor growth through an IL-6-Stat3 signaling pathway. J. Exp. Med. 206, 1457–1464 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Song, L. et al. Valpha24-invariant NKT cells mediate antitumor activity via killing of tumor-associated macrophages. J. Clin. Invest. 119, 1524–1536 (2009). Interesting study demonstrating a direct role of NKT cells in killing TAMs and thereby promoting anti-tumor activity.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Luo, Y. et al. Targeting tumor-associated macrophages as a novel strategy against breast cancer. J. Clin. Invest. 116, 2132–2141 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Moretta, A., Locatelli, F. & Moretta, L. Human NK cells: from HLA class I-specific killer Ig-like receptors to the therapy of acute leukemias. Immunol. Rev. 224, 58–69 (2008).

    CAS  PubMed  Google Scholar 

  99. Andreu, P. et al. FcRγ activation regulates inflammation-associated squamous carcinogenesis. Cancer Cell 17, 121–134 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. de Visser, K.E., Korets, L.V. & Coussens, L.M. De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell 7, 411–423 (2005). The two landmark papers above provided the first direct evidence of how B cells orchestrate the recruitment as well as protumoral polarization of myelomonocytic cells (via the Fcγ receptor pathway) to drive cancer-related inflammation and tumor progression.

    CAS  PubMed  Google Scholar 

  101. Markiewski, M.M. et al. Modulation of the antitumor immune response by complement. Nat. Immunol. 9, 1225–1235 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Erez, N., Truitt, M., Olson, P. & Hanahan, D. Cancer-associated fibroblasts are activated in incipient neoplasia to orchestrate tumor-promoting inflammation in an NF-κB-dependent manner. Cancer Cell 17, 135–147 (2010). First study to describe the crucial role of cancer-associated fibroblasts in supporting cancer-related inflammation and tumor progression.

    CAS  PubMed  Google Scholar 

  103. Leidi, M. et al. M2 macrophages phagocytose rituximab-opsonized leukemic targets more efficiently than m1 cells in vitro. J. Immunol. 182, 4415–4422 (2009).

    CAS  PubMed  Google Scholar 

  104. Parkes, H. et al. In situ hybridisation and S1 mapping show that the presence of infiltrating plasma cells is associated with poor prognosis in breast cancer. Br. J. Cancer 58, 715–722 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Saccani, A. et al. p50 nuclear factor-κB overexpression in tumor-associated macrophages inhibits M1 inflammatory responses and antitumor resistance. Cancer Res. 66, 11432–11440 (2006).

    CAS  PubMed  Google Scholar 

  106. Stout, R.D., Watkins, S.K. & Suttles, J. Functional plasticity of macrophages: in situ reprogramming of tumor-associated macrophages. J. Leukoc. Biol. 86, 1105–1109 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Duluc, D. et al. Interferon-γ reverses the immunosuppressive and protumoral properties and prevents the generation of human tumor-associated macrophages. Int. J. Cancer 125, 367–373 (2009).

    CAS  PubMed  Google Scholar 

  108. Guiducci, C., Vicari, A.P., Sangaletti, S., Trinchieri, G. & Colombo, M.P. Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection. Cancer Res. 65, 3437–3446 (2005).

    CAS  PubMed  Google Scholar 

  109. Wang, Y.C. et al. Notch signaling determines the M1 versus M2 polarization of macrophages in antitumor immune responses. Cancer Res. 70, 4840–4849 (2010).

    CAS  PubMed  Google Scholar 

  110. Ostrand-Rosenberg, S. Immune surveillance: a balance between protumor and antitumor immunity. Curr. Opin. Genet. Dev. 18, 11–18 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Kortylewski, M. et al. Inhibiting Stat3 signaling in the hematopoietic system elicits multicomponent antitumor immunity. Nat. Med. 11, 1314–1321 (2005).

    CAS  PubMed  Google Scholar 

  112. Galon, J. et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science (New York, N.Y.) 313, 1960–1964 (2006).

    CAS  Google Scholar 

  113. Fridlender, Z.G. et al. Polarization of tumor-associated neutrophil phenotype by TGF-β: 'N1' versus 'N2' TAN. Cancer Cell 16, 183–194 (2009). First demonstration of neutrophil polarization into distinct phenotypes (N1-N2) in the context of tumor progression, mirroring the concept of macrophage polarization.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Supported by Biomedical Research Council, Agency for Science, Technology & Research (S.K.B.), the European Commission (A.M.) and the Italian Association for Cancer Research (A.M.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Subhra K Biswas or Alberto Mantovani.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biswas, S., Mantovani, A. Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 11, 889–896 (2010). https://doi.org/10.1038/ni.1937

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1937

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer