Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1

Abstract

Viral infection triggers innate immune sensors to produce type I interferon. However, infection of T cells and macrophages with human immunodeficiency virus (HIV) does not trip those alarms. How HIV avoids activating nucleic acid sensors is unknown. Here we found that the cytosolic exonuclease TREX1 suppressed interferon triggered by HIV. In Trex1−/− mouse cells and human CD4+ T cells and macrophages in which TREX1 was inhibited by RNA-mediated interference, cytosolic HIV DNA accumulated and HIV infection induced type I interferon that inhibited HIV replication and spreading. TREX1 bound to cytosolic HIV DNA and digested excess HIV DNA that would otherwise activate interferon expression via a pathway dependent on the kinase TBK1, the adaptor STING and the transcription factor IRF3. HIV-stimulated interferon production in cells deficient in TREX1 did not involve known nucleic acid sensors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TREX1 deficiency inhibits HIV replication and activates IFN-β in response to HIV infection.
Figure 2: HIV-stimulated expression of interferon is IRF3 dependent.
Figure 3: Cytosolic HIV DNA in Trex1−/− cells is the trigger for interferon expression.
Figure 4: Recognition of HIV products of reverse transcription by enzymatically active TREX1 suppresses interferon induction.
Figure 5: TREX1-specific siRNA treatment induces IFN-α and IFN-β and inhibits HIV replication in primary human immune cells.
Figure 6: HIV-stimulated interferon induction requires IRF3, TBK1 and STING.

Similar content being viewed by others

References

  1. Bowerman, B., Brown, N., Bishop, K. & Varmus, H. A nucleoprotein complex mediates the integration of retroviral DNA. Genes Dev. 3, 469–478 (1989).

    Article  CAS  Google Scholar 

  2. Yan, N., Cherepanov, P., Daigle, J.E., Engelman, A. & Lieberman, J. The SET complex acts as a barrier to autointegration of HIV-1. PLoS Pathog. 5, e1000327 (2009).

    Article  Google Scholar 

  3. Lee-Kirsch, M.A. et al. A mutation in TREX1 that impairs susceptibility to granzyme A-mediated cell death underlies familial chilblain lupus. J. Mol. Med. 85, 531–537 (2007).

    Article  CAS  Google Scholar 

  4. Lee-Kirsch, M.A. et al. Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nat. Genet. 39, 1065–1067 (2007).

    Article  CAS  Google Scholar 

  5. Crow, Y. et al. Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 cause Aicardi-Goutieres syndrome at the AGS1 locus. Nat. Genet. 38, 917–920 (2006).

    Article  CAS  Google Scholar 

  6. Stetson, D.B. & Medzhitov, R. Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity 24, 93–103 (2006).

    Article  CAS  Google Scholar 

  7. Stetson, D.B., Ko, J.S., Heidmann, T. & Medzhitov, R. Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134, 587–598 (2008).

    Article  CAS  Google Scholar 

  8. Yang, Y., Lindahl, T. & Barnes, D. Trex1 exonuclease degrades ssDNA to prevent chronic checkpoint activation and autoimmune disease. Cell 131, 873–886 (2007).

    Article  CAS  Google Scholar 

  9. Shun, M. et al. LEDGF/p75 functions downstream from preintegration complex formation to effect gene-specific HIV-1 integration. Genes Dev. 21, 1767–1778 (2007).

    Article  CAS  Google Scholar 

  10. Honda, K. et al. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434, 772–777 (2005).

    Article  CAS  Google Scholar 

  11. Kawai, T. et al. Interferon-α induction through Toll-like receptors involves a direct interaction of IRF7 with MyD88 and TRAF6. Nat. Immunol. 5, 1061–1068 (2004).

    Article  CAS  Google Scholar 

  12. Agy, M.B., Acker, R.L., Sherbert, C.H. & Katze, M.G. Interferon treatment inhibits virus replication in HIV-1- and SIV-infected CD4+ T-cell lines by distinct mechanisms: evidence for decreased stability and aberrant processing of HIV-1 proteins. Virology 214, 379–386 (1995).

    Article  CAS  Google Scholar 

  13. Coccia, E.M., Krust, B. & Hovanessian, A.G. Specific inhibition of viral protein synthesis in HIV-infected cells in response to interferon treatment. J. Biol. Chem. 269, 23087–23094 (1994).

    CAS  PubMed  Google Scholar 

  14. Shirazi, Y. & Pitha, P.M. Alpha interferon inhibits early stages of the human immunodeficiency virus type 1 replication cycle. J. Virol. 66, 1321–1328 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Baca-Regen, L., Heinzinger, N., Stevenson, M. & Gendelman, H.E. Alpha interferon-induced antiretroviral activities: restriction of viral nucleic acid synthesis and progeny virion production in human immunodeficiency virus type 1-infected monocytes. J. Virol. 68, 7559–7565 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Mazur, D. & Perrino, F. Identification and expression of the TREX1 and TREX2 cDNA sequences encoding mammalian 3′→5′ exonucleases. J. Biol. Chem. 274, 19655–19660 (1999).

    Article  CAS  Google Scholar 

  17. Lehtinen, D.A., Harvey, S., Mulcahy, M.J., Hollis, T. & Perrino, F.W. The TREX1 double-stranded DNA degradation activity is defective in dominant mutations associated with autoimmune disease. J. Biol. Chem. 283, 31649–31656 (2008).

    Article  CAS  Google Scholar 

  18. Hornung, V. & Latz, E. Intracellular DNA recognition. Nat. Rev. Immunol. 10, 123–130 (2010).

    Article  CAS  Google Scholar 

  19. Schroder, K., Muruve, D.A. & Tschopp, J. Innate immunity: cytoplasmic DNA sensing by the AIM2 inflammasome. Curr. Biol. 19, R262–R265 (2009).

    Article  CAS  Google Scholar 

  20. Yang, P. et al. The cytosolic nucleic acid sensor LRRFIP1 mediates the production of type I interferon via a β-catenin-dependent pathway. Nat. Immunol. 11, 487–494 (2010).

    Article  CAS  Google Scholar 

  21. Yanai, H. et al. HMGB proteins function as universal sentinels for nucleic-acid-mediated innate immune responses. Nature 462, 99–103 (2009).

    Article  CAS  Google Scholar 

  22. Chiu, Y.-H., Macmillan, J.B. & Chen, Z.J. RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 138, 576–591 (2009).

    Article  CAS  Google Scholar 

  23. Ablasser, A. et al. RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate. Nat. Immunol. 10, 1065–1072 (2009).

    Article  CAS  Google Scholar 

  24. Seth, R.B., Sun, L., Ea, C.-K. & Chen, Z.J. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122, 669–682 (2005).

    Article  CAS  Google Scholar 

  25. Kawai, T. et al. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat. Immunol. 6, 981–988 (2005).

    Article  CAS  Google Scholar 

  26. Xu, L.-G. VISA is an adapter protein required for virus-triggered IFN-β signaling. Mol. Cell 19, 727–740 (2005).

    Article  CAS  Google Scholar 

  27. Meylan, E. et al. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437, 1167–1172 (2005).

    Article  CAS  Google Scholar 

  28. Ishikawa, H. & Barber, G. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455, 647–678 (2008).

    Article  Google Scholar 

  29. Zhong, B. et al. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 29, 538–550 (2008).

    Article  CAS  Google Scholar 

  30. Sun, W. et al. ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. Proc. Natl. Acad. Sci. USA 106, 8653–8658 (2009).

    Article  CAS  Google Scholar 

  31. Ishikawa, H., Ma, Z. & Barber, G.N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461, 788–792 (2009).

    Article  CAS  Google Scholar 

  32. Fan, Z., Beresford, P., Zhang, D. & Lieberman, J. HMG2 interacts with the nucleosome assembly protein SET and is a target of the cytotoxic T-lymphocyte protease granzyme A. Mol. Cell. Biol. 22, 2810–2820 (2002).

    Article  CAS  Google Scholar 

  33. Lehming, N., Le Saux, A., Schüller, J. & Ptashne, M. Chromatin components as part of a putative transcriptional repressing complex. Proc. Natl. Acad. Sci. USA 95, 7322–7326 (1998).

    Article  CAS  Google Scholar 

  34. Gabellini, D., Green, M.R. & Tupler, R. Inappropriate gene activation in FSHD: a repressor complex binds a chromosomal repeat deleted in dystrophic muscle. Cell 110, 339–348 (2002).

    Article  CAS  Google Scholar 

  35. El Gazzar, M. et al. Chromatin-specific remodeling by HMGB1 and linker histone H1 silences proinflammatory genes during endotoxin tolerance. Mol. Cell. Biol. 29, 1959–1971 (2009).

    Article  CAS  Google Scholar 

  36. Goldfeld, A.E., Birch-Limberger, K., Schooley, R.T. & Walker, B.D. HIV-1 infection does not induce tumor necrosis factor-α or interferon-β gene transcription. J. Acquir. Immune Defic. Syndr. 4, 41–47 (1991).

    Article  CAS  Google Scholar 

  37. Haase, A.T. Targeting early infection to prevent HIV-1 mucosal transmission. Nature 464, 217–223 (2010).

    Article  CAS  Google Scholar 

  38. Beignon, A.-S. et al. Endocytosis of HIV-1 activates plasmacytoid dendritic cells via Toll-like receptor-viral RNA interactions. J. Clin. Invest. 115, 3265–3275 (2005).

    Article  CAS  Google Scholar 

  39. Takaoka, A. et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448, 501–505 (2007).

    Article  CAS  Google Scholar 

  40. Siva, A. & Bushman, F. Poly(ADP-ribose) polymerase 1 is not strictly required for infection of murine cells by retroviruses. J. Virol. 76, 11904–11910 (2002).

    Article  CAS  Google Scholar 

  41. Pagans, S. et al. SIRT1 regulates HIV transcription via Tat deacetylation. PLoS Biol. 3, e41 (2005).

    Article  Google Scholar 

  42. Fan, Z., Beresford, P., Oh, D., Zhang, D. & Lieberman, J. Tumor suppressor NM23–H1 is a granzyme A-activated DNase during CTL-mediated apoptosis, and the nucleosome assembly protein SET is its inhibitor. Cell 112, 659–672 (2003).

    Article  CAS  Google Scholar 

  43. Zandman-Goddard, G. & Shoenfeld, Y. HIV and autoimmunity. Autoimmun. Rev. 1, 329–337 (2002).

    Article  CAS  Google Scholar 

  44. Morita, M. et al. Gene-targeted mice lacking the Trex1 (DNase III) 3′→5′ DNA exonuclease develop inflammatory myocarditis. Mol. Cell. Biol. 24, 6719–6727 (2004).

    Article  CAS  Google Scholar 

  45. Brass, A.L. et al. Identification of host proteins required for HIV infection through a functional genomic screen. Science 319, 921–926 (2008).

    Article  CAS  Google Scholar 

  46. He, J. et al. CCR3 and CCR5 are co-receptors for HIV-1 infection of microglia. Nature 385, 645–649 (1997).

    Article  CAS  Google Scholar 

  47. Shun, M.C., Daigle, J.E., Vandegraaff, N. & Engelman, A. Wild-type levels of human immunodeficiency virus type 1 infectivity in the absence of cellular emerin protein. J. Virol. 81, 166–172 (2007).

    Article  CAS  Google Scholar 

  48. Hirt, B. Selective extraction of polyoma DNA from infected mouse cell cultures. J. Mol. Biol. 26, 365–369 (1967).

    Article  CAS  Google Scholar 

  49. Paz, S. et al. Ubiquitin-regulated recruitment of IκB kinase ɛ to the MAVS interferon signaling adapter. Mol. Cell. Biol. 29, 3401–3412 (2009).

    Article  CAS  Google Scholar 

  50. Uzri, D. & Gehrke, L. Nucleotide sequences and modifications that determine RIG-I/RNA binding and signaling activities. J. Virol. 83, 4174–4184 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Stetson (University of Washington) for wild-type, Trex1−/− and Trex1−/−Irf3−/− primary MEFs, under agreement with D. Barnes and T. Lindahl (Cancer Research UK); J. Jung (University of Southern California) for RIG-I-deficient (Ddx58−/−) MEFs; S. Harvey and F. Perrino (Wake Forest University) for wild-type and Trex1−/− transformed MEFs; A. Engelman (Dana-Farber Cancer Institute) for the HIV-luciferase plasmid (pNL4-3/Env); D. Gabuzda (Dana-Farber Cancer Institute) for the HIV-GFP plasmid (pNL4-3/Env); T. Fujita (Kyoto University) for antiserum to mouse IRF3; S. Nagata (Kyoto University) for the hemagglutinin-tagged MAVS plasmid; K. Fitzgerald (University of Massachusetts) for siRNA and inhibitors of RNA polymerase III; J. Hiscott (McGill University) for IFNB-luciferase plasmid; L. Gehrke (Harvard Medical School) for CMV–renilla luciferase plasmid; and members of the Lieberman lab for discussions. Supported by the US National Institutes of Health (AI45587 to J.L., and T32 HL066987 to N.Y.), the Harvard Center for AIDS Research (N.Y.), Harvard Summer Honors Undergraduate Research Program (A.D.R.-M.) and Deutsche Forschungsgemeinschaft (Le 1074/3-1 to M.A.L.-K.).

Author information

Authors and Affiliations

Authors

Contributions

N.Y. conceived of the study, designed and did most experiments and helped write the paper; A.D.R.-M. and B.S. helped do the experiments; M.A.L.-K. provided human cell lines and scientific advice; and J.L. conceived of and supervised the study and helped write the paper.

Corresponding author

Correspondence to Judy Lieberman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Tables 1–2 (PDF 1971 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, N., Regalado-Magdos, A., Stiggelbout, B. et al. The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1. Nat Immunol 11, 1005–1013 (2010). https://doi.org/10.1038/ni.1941

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1941

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing