Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CD1a-autoreactive T cells are a normal component of the human αβ T cell repertoire

Abstract

CD1 activates T cells, but the function and size of the possible human T cell repertoires that recognize each of the CD1 antigen-presenting molecules remain unknown. Using an experimental system that bypasses major histocompatibility complex (MHC) restriction and the requirement for defined antigens, we show that polyclonal T cells responded at higher rates to cells expressing CD1a than to those expressing CD1b, CD1c or CD1d. Unlike the repertoire of invariant natural killer T (NKT) cells, the CD1a-autoreactive repertoire contained diverse T cell antigen receptors (TCRs). Functionally, many CD1a-autoreactive T cells homed to skin, where they produced interleukin 22 (IL-22) in response to CD1a on Langerhans cells. The strong and frequent responses among genetically diverse donors define CD1a-autoreactive cells as a normal part of the human T cell repertoire and CD1a as a target of the TH22 subset of helper T cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Population study of CD1-autoreactive cells in blood of human donors.
Figure 2: Autoreactive T cells in the blood recognize CD1a.
Figure 3: Quantitative detection of CD1a-autoreactive memory T cells.
Figure 4: CD1a-autoreactive T cells in the blood express skin-homing markers.
Figure 5: CD1a-dependent IL-22 production.
Figure 6: The TH22 subset contains CD1a-autoreactive T cells.
Figure 7: IL-22 producing CD1a-autoreactive T cells in human skin.

Similar content being viewed by others

References

  1. Fowlkes, B.J. et al. A novel population of T-cell receptor α beta-bearing thymocytes which predominantly expresses a single Vβ gene family. Nature 329, 251–254 (1987).

    Article  CAS  PubMed  Google Scholar 

  2. Lantz, O. & Bendelac, A. An invariant T cell receptor alpha chain is used by a unique subset of major histocompatibility complex class I-specific CD4+ and CD48 T cells in mice and humans. J. Exp. Med. 180, 1097–1106 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Porcelli, S., Yockey, C.E., Brenner, M.B. & Balk, S.P. Analysis of T cell antigen receptor (TCR) expression by human peripheral blood CD48 α/β T cells demonstrates preferential use of several Vβ genes and an invariant TCR α chain. J. Exp. Med. 178, 1–16 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Benlagha, K., Weiss, A., Beavis, A., Teyton, L. & Bendelac, A. In vivo identification of glycolipid antigen-specific T cells using fluorescent CD1d tetramers. J. Exp. Med. 191, 1895–1903 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gumperz, J.E., Miyake, S., Yamamura, T. & Brenner, M.B. Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. J. Exp. Med. 195, 625–636 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Matsuda, J.L. et al. Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J. Exp. Med. 192, 741–754 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Karadimitris, A. et al. Human CD1d-glycolipid tetramers generated by in vitro oxidative refolding chromatography. Proc. Natl. Acad. Sci. USA 98, 3294–3298 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Smiley, S.T., Kaplan, M.H. & Grusby, M.J. Immunoglobulin E production in the absence of interleukin-4-secreting CD1-dependent cells. Science 275, 977–979 (1997).

    Article  CAS  PubMed  Google Scholar 

  9. Cui, J. et al. Requirement for Vα14 NKT cells in IL-12-mediated rejection of tumors. Science 278, 1623–1626 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Godfrey, D.I. & Kronenberg, M. Going both ways: immune regulation via CD1d-dependent NKT cells. J. Clin. Invest. 114, 1379–1388 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Van Rhijn, I. et al. The bovine CD1 family contains group 1 CD1 proteins, but no functional CD1d. J. Immunol. 176, 4888–4893 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Looringh van Beeck, F.A. et al. Two canine CD1a proteins are differentially expressed in skin. Immunogenetics 60, 315–324 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dascher, C.C. Evolutionary biology of CD1. Curr. Top. Microbiol. Immunol. 314, 3–26 (2007).

    CAS  PubMed  Google Scholar 

  14. Kasmar, A., Van Rhijn, I. & Moody, D.B. The evolved functions of CD1 during infection. Curr. Opin. Immunol. 21, 397–403 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Roura-Mir, C. et al. Mycobacterium tuberculosis regulates CD1 antigen presentation pathways through TLR-2. J. Immunol. 175, 1758–1766 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Dougan, S.K., Kaser, A. & Blumberg, R.S. CD1 expression on antigen-presenting cells. Curr. Top. Microbiol. Immunol. 314, 113–141 (2007).

    CAS  PubMed  Google Scholar 

  17. Sugita, M., Cernadas, M. & Brenner, M.B. New insights into pathways for CD1-mediated antigen presentation. Curr. Opin. Immunol. 16, 90–95 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Moody, D.B., Zajonc, D.M. & Wilson, I.A. Anatomy of CD1-lipid antigen complexes. Nat. Rev. Immunol. 5, 387–399 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Porcelli, S. et al. Recognition of cluster of differentiation 1 antigens by human CD4CD8 cytolytic T lymphocytes. Nature 341, 447–450 (1989).

    Article  CAS  PubMed  Google Scholar 

  20. Rosat, J.P. et al. CD1-restricted microbial lipid antigen-specific recognition found in the CD8+ αβ T cell pool. J. Immunol. 162, 366–371 (1999).

    CAS  PubMed  Google Scholar 

  21. Sieling, P.A. et al. Evidence for human CD4+ T cells in the CD1-restricted repertoire: derivation of mycobacteria-reactive T cells from leprosy lesions. J. Immunol. 164, 4790–4796 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Moody, D.B. The surprising diversity of lipid antigens for CD1-restricted T cells. Adv. Immunol. 89, 87–139 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Borg, N.A. et al. CD1d-lipid-antigen recognition by the semi-invariant NKT T-cell receptor. Nature 448, 44–49 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Shamshiev, A. et al. The αβ T cell response to self-glycolipids shows a novel mechanism of CD1b loading and a requirement for complex oligosaccharides. Immunity 13, 255–264 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Shamshiev, A. et al. Presentation of the same glycolipid by different CD1 molecules. J. Exp. Med. 195, 1013–1021 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sieling, P.A. et al. Human double-negative T cells in systemic lupus erythematosus provide help for IgG and are restricted by CD1c. J. Immunol. 165, 5338–5344 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. Vincent, M.S., Xiong, X., Grant, E.P., Peng, W. & Brenner, M.B. CD1a-, b-, and c-restricted TCRs recognize both self and foreign antigens. J. Immunol. 175, 6344–6351 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Zhou, D. et al. Lysosomal glycosphingolipid recognition by NKT cells. Science 306, 1786–1789 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Klein, E. et al. Properties of the K562 cell line, derived from a patient with chronic myeloid leukemia. Int. J. Cancer 18, 421–431 (1976).

    Article  CAS  PubMed  Google Scholar 

  30. Britten, C.M. et al. The use of HLA-A*0201-transfected K562 as standard antigen-presenting cells for CD8+ T lymphocytes in IFN-γ ELISPOT assays. J. Immunol. Methods 259, 95–110 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Shamshiev, A. et al. Self glycolipids as T-cell autoantigens. Eur. J. Immunol. 29, 1667–1675 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Roura-Mir, C. et al. CD1a and CD1c activate intrathyroidal T cells during Graves' disease and Hashimoto's thyroiditis. J. Immunol. 174, 3773–3780 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Moody, D.B. et al. Lipid length controls antigen entry into endosomal and nonendosomal pathways for CD1b presentation. Nat. Immunol. 3, 435–442 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Vincent, M.S. et al. CD1-dependent dendritic cell instruction. Nat. Immunol. 3, 1163–1168 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Meunier, L. et al. Quantification of CD1a, HLA-DR, and HLA class I expression on viable human Langerhans cells and keratinocytes. Cytometry 26, 260–264 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Yu, R.C., Abrams, D.C., Alaibac, M. & Chu, A.C. Morphological and quantitative analyses of normal epidermal Langerhans cells using confocal scanning laser microscopy. Br. J. Dermatol. 131, 843–848 (1994).

    Article  CAS  PubMed  Google Scholar 

  37. Chu, A. et al. Immunoelectron microscopic identification of Langerhans cells using a new antigenic marker. J. Invest. Dermatol. 78, 177–180 (1982).

    Article  CAS  PubMed  Google Scholar 

  38. Armerding, D. & Kupper, T.S. Functional cutaneous lymphocyte antigen can be induced in essentially all peripheral blood T lymphocytes. Int. Arch. Allergy Immunol. 119, 212–222 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Fuhlbrigge, R.C., Kieffer, J.D., Armerding, D. & Kupper, T.S. Cutaneous lymphocyte antigen is a specialized form of PSGL-1 expressed on skin-homing T cells. Nature 389, 978–981 (1997).

    Article  CAS  PubMed  Google Scholar 

  40. Agea, E. et al. Human CD1-restricted T cell recognition of lipids from pollens. J. Exp. Med. 202, 295–308 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang, X. et al. Natural killer T-cell autoreactivity leads to a specialized activation state. Blood 112, 4128–4138 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wolk, K. et al. IL-22 increases the innate immunity of tissues. Immunity 21, 241–254 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Boniface, K. et al. IL-22 inhibits epidermal differentiation and induces proinflammatory gene expression and migration of human keratinocytes. J. Immunol. 174, 3695–3702 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Wolk, K. & Sabat, R. Interleukin-22: a novel T- and NK-cell derived cytokine that regulates the biology of tissue cells. Cytokine Growth Factor Rev. 17, 367–380 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. Liang, S.C. et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J. Exp. Med. 203, 2271–2279 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nograles, K.E. et al. IL-22-producing “T22” T cells account for upregulated IL-22 in atopic dermatitis despite reduced IL-17-producing TH17 T cells. J. Allergy Clin. Immunol. 123, 1244–1252 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Duhen, T., Geiger, R., Jarrossay, D., Lanzavecchia, A. & Sallusto, F. Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. Nat. Immunol. 10, 857–863 (2009).

    Article  CAS  PubMed  Google Scholar 

  48. Trifari, S., Kaplan, C.D., Tran, E.H., Crellin, N.K. & Spits, H. Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from TH-17, TH1 and TH2 cells. Nat. Immunol. 10, 864–871 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Eyerich, S. et al. Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J. Clin. Invest. 119, 3573–3585 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Veldhoen, M. et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453, 106–109 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Clark, R.A. et al. A novel method for the isolation of skin resident T cells from normal and diseased human skin. J. Clin. Invest. 126, 1059–1070 (2006).

    CAS  Google Scholar 

  52. Strid, J., Tigelaar, R.E. & Hayday, A.C. Skin immune surveillance by T cells–a new order? Semin. Immunol. 21, 110–120 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Foster, C.A. et al. Human epidermal T cells predominantly belong to the lineage expressing α/β T cell receptor. J. Exp. Med. 171, 997–1013 (1990).

    Article  CAS  PubMed  Google Scholar 

  54. Clark, R.A. et al. The vast majority of CLA+ T cells are resident in normal skin. J. Immunol. 176, 4431–4439 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Alam, M.S. et al. Notch signaling drives IL-22 secretion in CD4+ T cells by stimulating the aryl hydrocarbon receptor. Proc. Natl. Acad. Sci. USA 107, 5943–5948 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Korn, T., Bettelli, E., Oukka, M. & Kuchroo, V.K. IL-17 and Th17 Cells. Annu. Rev. Immunol. 27, 485–517 (2009).

    Article  CAS  PubMed  Google Scholar 

  57. Boniface, K. et al. A role for T cell-derived interleukin 22 in psoriatic skin inflammation. Clin. Exp. Immunol. 150, 407–415 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pena-Cruz, V. et al. Extraction of human Langerhans cells: a method for isolation of epidermis-resident dendritic cells. J. Immunol. Methods 255, 83–91 (2001).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D.C. Barral, M. Brenner and M. Relloso (Harvard Medical School) and M. Sugita (Kyoto University) for CD1 plasmid constructs; J. Gumperz (University of Wisconsin) and M. Brigl (Harvard Medical School) for human NKT cell lines; G. Losyev for cell sorting; and K. Magalhães, S. Huang, I.C. Ho and R. Grenningloh for technical advice. Supported by the National Institute of Arthritis, Musculoskeletal and Skin Diseases (048632 to D.B.M. and AR056720 to R.A.C.), the National Institute of Allergy and Infectious Diseases (AI071155 to D.B.M., and AI054456 and AI056299), the Damon Runyon Cancer Research Foundation (R.A.C.), the Burroughs Wellcome Fund (D.B.M.) and the National Psoriasis Foundation (A.d.J.).

Author information

Authors and Affiliations

Authors

Contributions

A.d.J. designed and did the experiments; A.d.J. and D.B.M. prepared the manuscript; D.B.M. supervised the experiments; V.P.-C. isolated LCs from human epidermis and lymphocytes from the dermis; T.-Y.C. did T cell culture and immunoblot analysis; I.V.R. assisted in experiments; and R.A.C. provided T cells isolated from human skin biopsies.

Corresponding author

Correspondence to D Branch Moody.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Table 1 (PDF 2806 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Jong, A., Peña-Cruz, V., Cheng, TY. et al. CD1a-autoreactive T cells are a normal component of the human αβ T cell repertoire. Nat Immunol 11, 1102–1109 (2010). https://doi.org/10.1038/ni.1956

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.1956

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing