Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The transcription factors Blimp-1 and IRF4 jointly control the differentiation and function of effector regulatory T cells

Abstract

Regulatory T cells (Treg cells) are required for peripheral tolerance. Evidence indicates that Treg cells can adopt specialized differentiation programs in the periphery that are controlled by transcription factors usually associated with helper T cell differentiation. Here we demonstrate that expression of the transcription factor Blimp-1 defined a population of Treg cells that localized mainly to mucosal sites and produced IL-10. Blimp-1 was required for IL-10 production by these cells and for their tissue homeostasis. We provide evidence that the transcription factor IRF4, but not the transcription factor T-bet, was essential for Blimp-1 expression and for the differentiation of all effector Treg cells. Thus, our study defines a differentiation pathway that leads to the acquisition of Treg cell effector functions and requires both IRF4 and Blimp-1.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of Blimp-1 in a subset of Treg cells.
Figure 2: Blimp-1-expressing Treg cells have an effector phenotype, produce IL-10 and localize to mucosal sites.
Figure 3: Blimp-1 is dispensable for the generation of effector Treg cells but is required for their IL-10 production and tissue homeostasis.
Figure 4: Blimp-1 limits numbers of Treg cells and is induced by IL-2 and inflammatory signals.
Figure 5: IRF4 is required for the generation of Blimp-1-expressing effector Treg cells, but T-bet is not.
Figure 6: Blimp-1 and IRF4 jointly regulate the effector Treg cell differentiation program.
Figure 7: Binding of IRF4 and Blimp-1 to regulatory regions in the Il10 and Ccr6 loci.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Lu, L.F. & Rudensky, A. Molecular orchestration of differentiation and function of regulatory T cells. Genes Dev. 23, 1270–1282 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sakaguchi, S., Yamaguchi, T., Nomura, T. & Ono, M. Regulatory T cells and immune tolerance. Cell 133, 775–787 (2008).

    CAS  PubMed  Google Scholar 

  3. D'Cruz, L.M. & Klein, L. Development and function of agonist-induced CD25+Foxp3+ regulatory T cells in the absence of interleukin 2 signaling. Nat. Immunol. 6, 1152–1159 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Fontenot, J.D., Rasmussen, J.P., Gavin, M.A. & Rudensky, A.Y. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat. Immunol. 6, 1142–1151 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Zheng, Y. & Rudensky, A.Y. Foxp3 in control of the regulatory T cell lineage. Nat. Immunol. 8, 457–462 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Fontenot, J.D., Gavin, M.A. & Rudensky, A.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Fontenot, J.D. et al. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 22, 329–341 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Wing, K. et al. CTLA-4 control over Foxp3+ regulatory T cell function. Science 322, 271–275 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Friedline, R.H. et al. CD4+ regulatory T cells require CTLA-4 for the maintenance of systemic tolerance. J. Exp. Med. 206, 421–434 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pandiyan, P., Zheng, L., Ishihara, S., Reed, J. & Lenardo, M.J. CD4+CD25+Foxp3+ regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nat. Immunol. 8, 1353–1362 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Rubtsov, Y.P. et al. Regulatory T cell-derived interleukin-10 limits inflammation at environmental interfaces. Immunity 28, 546–558 (2008).

    Article  CAS  PubMed  Google Scholar 

  12. Ito, T. et al. Two functional subsets of FOXP3+ regulatory T cells in human thymus and periphery. Immunity 28, 870–880 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kleinewietfeld, M. et al. CCR6 expression defines regulatory effector/memory-like cells within the CD25+CD4+ T-cell subset. Blood 105, 2877–2886 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Strauss, L. et al. Expression of ICOS on human melanoma-infiltrating CD4+CD25highFoxp3+ T regulatory cells: implications and impact on tumor-mediated immune suppression. J. Immunol. 180, 2967–2980 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, N. et al. Regulatory T cells sequentially migrate from inflamed tissues to draining lymph nodes to suppress the alloimmune response. Immunity 30, 458–469 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kamanaka, M. et al. Expression of interleukin-10 in intestinal lymphocytes detected by an interleukin-10 reporter knockin tiger mouse. Immunity 25, 941–952 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Zheng, Y. et al. Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control TH2 responses. Nature 458, 351–356 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Koch, M.A. et al. The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat. Immunol. 10, 595–602 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chaudhry, A. et al. CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science 326, 986–991 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gavin, M.A. et al. Foxp3-dependent programme of regulatory T-cell differentiation. Nature 445, 771–775 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Zheng, Y. et al. Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature 445, 936–940 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Nutt, S.L., Fairfax, K.A. & Kallies, A. BLIMP1 guides the fate of effector B and T cells. Nat. Rev. Immunol. 7, 923–927 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Kallies, A. & Nutt, S.L. Terminal differentiation of lymphocytes depends on Blimp-1. Curr. Opin. Immunol. 19, 156–162 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Martins, G. & Calame, K. Regulation and functions of Blimp-1 in T and B lymphocytes. Annu. Rev. Immunol. 26, 133–169 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Kallies, A. et al. Transcriptional repressor Blimp-1 is essential for T cell homeostasis and self-tolerance. Nat. Immunol. 7, 466–474 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Martins, G.A. et al. Transcriptional repressor Blimp-1 regulates T cell homeostasis and function. Nat. Immunol. 7, 457–465 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Gong, D. & Malek, T.R. Cytokine-dependent Blimp-1 expression in activated T cells inhibits IL-2 production. J. Immunol. 178, 242–252 (2007).

    Article  CAS  PubMed  Google Scholar 

  28. Santer-Nanan, B. et al. Blimp-1 is expressed in human and mouse T cell subsets and leads to loss of IL-2 production and to defective proliferation. Signal Transduct. 6, 268–279 (2006).

    Article  Google Scholar 

  29. Cimmino, L. et al. Blimp-1 attenuates Th1 differentiation by repression of ifng, tbx21, and bcl6 gene expression. J. Immunol. 181, 2338–2347 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Johnston, R.J. et al. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science 325, 1006–1010 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kallies, A., Xin, A., Belz, G.T. & Nutt, S.L. Blimp-1 transcription factor is required for the differentiation of effector CD8+ T cells and memory responses. Immunity 31, 283–295 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Rutishauser, R.L. et al. Transcriptional repressor Blimp-1 promotes CD8+ T cell terminal differentiation and represses the acquisition of central memory T cell properties. Immunity 31, 296–308 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kallies, A. et al. Plasma cell ontogeny defined by quantitative changes in blimp-1 expression. J. Exp. Med. 200, 967–977 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mottet, C., Uhlig, H.H. & Powrie, F. Cutting edge: cure of colitis by CD4+CD25+ regulatory T cells. J. Immunol. 170, 3939–3943 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Boyman, O., Kovar, M., Rubinstein, M.P., Surh, C.D. & Sprent, J. Selective stimulation of T cell subsets with antibody-cytokine immune complexes. Science 311, 1924–1927 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Sciammas, R. et al. Graded expression of interferon regulatory factor-4 coordinates isotype switching with plasma cell differentiation. Immunity 25, 225–236 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Kwon, H. et al. Analysis of interleukin-21-induced Prdm1 gene regulation reveals functional cooperation of STAT3 and IRF4 transcription factors. Immunity 31, 941–952 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mittrucker, H.W. et al. Requirement for the transcription factor LSIRF/IRF4 for mature B and T lymphocyte function. Science 275, 540–543 (1997).

    Article  CAS  PubMed  Google Scholar 

  39. Brustle, A. et al. The development of inflammatory TH-17 cells requires interferon-regulatory factor 4. Nat. Immunol. 8, 958–966 (2007).

    Article  PubMed  Google Scholar 

  40. Staudt, V. et al. Interferon-regulatory factor 4 is essential for the developmental program of T helper 9 cells. Immunity 33, 192–202 (2010).

    Article  CAS  PubMed  Google Scholar 

  41. Shaffer, A.L. et al. Blimp-1 orchestrates plasma cell differentiation by extinguishing the mature B cell gene expression program. Immunity 17, 51–62 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Magnusdottir, E. et al. Epidermal terminal differentiation depends on B lymphocyte-induced maturation protein-1. Proc. Natl. Acad. Sci. USA 104, 14988–14993 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lee, C.G. et al. A distal cis-regulatory element, CNS-9, controls NFAT1 and IRF4-mediated IL-10 gene activation in T helper cells. Mol. Immunol. 46, 613–621 (2009).

    Article  CAS  PubMed  Google Scholar 

  44. Ahyi, A.N., Chang, H.C., Dent, A.L., Nutt, S.L. & Kaplan, M.H. IFN regulatory factor 4 regulates the expression of a subset of Th2 cytokines. J. Immunol. 183, 1598–1606 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Campbell, D.J. & Koch, M.A. Phenotypical and functional specialization of FOXP3+ regulatory T cells. Nat. Rev. Immunol. 11, 119–130 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yamazaki, T. et al. CCR6 regulates the migration of inflammatory and regulatory T cells. J. Immunol. 181, 8391–8401 (2008).

    Article  CAS  PubMed  Google Scholar 

  47. Kitamura, K., Farber, J.M. & Kelsall, B.L. CCR6 marks regulatory T cells as a colon-tropic, IL-10-producing phenotype. J. Immunol. 185, 3295–3304 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Klein, U. et al. Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination. Nat. Immunol. 7, 773–782 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Malissen, M. et al. Altered T cell development in mice with a targeted mutation of the CD3-epsilon gene. EMBO J. 14, 4641–4653 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bouillet, P. et al. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 286, 1735–1738 (1999).

    Article  CAS  PubMed  Google Scholar 

  51. Szabo, S.J. et al. Distinct effects of T-bet in TH1 lineage commitment and IFN-γ production in CD4 and CD8 T cells. Science 295, 338–342 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Kallies, A. et al. Initiation of plasma-cell differentiation is independent of the transcription factor Blimp-1. Immunity 26, 555–566 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. de Boer, E. et al. Efficient biotinylation and single-step purification of tagged transcription factors in mammalian cells and transgenic mice. Proc. Natl. Acad. Sci. USA 100, 7480–7485 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Driegen, S. et al. A generic tool for biotinylation of tagged proteins in transgenic mice. Transgenic Res. 14, 477–482 (2005).

    Article  CAS  PubMed  Google Scholar 

  55. Boyer, L.A. et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349–353 (2006).

    Article  CAS  PubMed  Google Scholar 

  56. Ebert, A. et al. Novel regulatory elements with Pax5-dependent activity in pro-B cells are interspersed in the distal VH gene cluster of the Igh locus. Immunity (in the press).

  57. Decker, T. et al. Stepwise activation of enhancer and promoter regions of the B cell commitment gene Pax5 in early lymphopoiesis. Immunity 30, 508–520 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Flynn, K.J. et al. Virus-specific CD8+ T cells in primary and secondary influenza pneumonia. Immunity 8, 683–691 (1998).

    Article  CAS  PubMed  Google Scholar 

  59. Shi, W., Oshlack, A. & Smyth, G.K . Optimizing the noise versus bias trade-off for Illumina Whole Genome Expression BeadChips. Nucleic Acids Res. (in the press).

  60. Smyth, G.K. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, article 3 (2004).

    Article  Google Scholar 

  61. Gentleman, R.C. et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wu, D. et al. ROAST: rotation gene set tests for complex microarray experiments. Bioinformatics 26, 2176–2182 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kel, A.E. et al. MATCH: A tool for searching transcription factor binding sites in DNA sequences. Nucleic Acids Res. 31, 3576–3579 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jeanmougin, F. et al. Multiple sequence alignment with Clustal X. Trends Biochem. Sci. 23, 403–405 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Mak, L. Wu, J. Altin and P. Bouillet for mice; S. Sterle, N. Bernard, R. Thong and K. Elder for technical support; Y. Zhan, I. Campbell and K. Shortman for antibodies; L. Corcoran and D. Tarlinton for discussion and reagents; and Y. Zheng and A. Rudensky for the full microarray data set already published in part17. Supported by the National Health and Medical Research Council of Australia (E.C., G.T.B., S.L.N. and A.K.), L'Oréal Australia For Women in Science Fellowship (E.C.), the Swiss National Science Foundation (F.M.), the Viertel Foundation, the Howard Hughes Medical Institute (G.T.B.), the Pfizer Australia Research Fellowship program (S.L.N.), the Leukemia & Lymphoma Society (A.K.), Boehringer Ingelheim (Busslinger group) and the European Union Sixth Framework Programme FP6 (EuTRACC project, Busslinger group).

Author information

Authors and Affiliations

Authors

Contributions

E.C., A.X., M.M., F.M., M.M. and A.K. designed and did experiments; W.S. and G.K.S. analyzed the microarray data; G.T.B. and M.B. designed experiments; and S.L.N. and A.K. designed experiments and wrote the paper and contributed equally to this work.

Corresponding authors

Correspondence to Stephen L Nutt or Axel Kallies.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12, Supplementary Tables 1–2 and Supplementary Methods (PDF 2066 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cretney, E., Xin, A., Shi, W. et al. The transcription factors Blimp-1 and IRF4 jointly control the differentiation and function of effector regulatory T cells. Nat Immunol 12, 304–311 (2011). https://doi.org/10.1038/ni.2006

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2006

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing