Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The P4-type ATPase ATP11C is essential for B lymphopoiesis in adult bone marrow

Abstract

B lymphopoiesis begins in the fetal liver, switching after birth to the bone marrow, where it persists for life. The unique developmental outcomes of each phase are well documented, yet their molecular requirements are not. Here we describe two allelic X-linked mutations in mice that caused cell-intrinsic arrest of adult B lymphopoiesis. Mutant fetal liver progenitors generated B cells in situ but not in irradiated adult bone marrow, which emphasizes a necessity for the affected pathway only in the context of adult bone marrow. The causative mutations were ascribed to Atp11c, which encodes a P4-type ATPase with no previously described function. Our data establish an essential, cell-autonomous and context-sensitive function for ATP11C, a putative aminophospholipid flippase, in B cell development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A heritable B cell deficiency.
Figure 2: Immunoglobulin secretion in emptyhive mice.
Figure 3: A cell-intrinsic failure of adult B cell development.
Figure 4: Sensitivity to IL-7 and a failure to sustain expression of Ebf1.
Figure 5: Partial correction of the emptyhive phenotype by BCR transgenes.
Figure 6: The emptyhive phenotype is caused by a recessive mutation of Atp11c.
Figure 7: Intact B lymphopoiesis in fetal liver.

Similar content being viewed by others

Accession codes

Accessions

Mouse Genome Informatics

References

  1. Hardy, R.R. & Hayakawa, K. B cell development pathways. Annu. Rev. Immunol. 19, 595–621 (2001).

    Article  CAS  Google Scholar 

  2. Lopes-Carvalho, T., Foote, J. & Kearney, J.F. Marginal zone B cells in lymphocyte activation and regulation. Curr. Opin. Immunol. 17, 244–250 (2005).

    Article  CAS  Google Scholar 

  3. Tung, J.W. & Herzenberg, L.A. Unraveling B-1 progenitors. Curr. Opin. Immunol. 19, 150–155 (2007).

    Article  CAS  Google Scholar 

  4. Hao, Z. & Rajewsky, K. Homeostasis of peripheral B cells in the absence of B cell influx from the bone marrow. J. Exp. Med. 194, 1151–1164 (2001).

    Article  CAS  Google Scholar 

  5. Carvalho, T.L., Mota-Santos, T., Cumano, A., Demengeot, J. & Vieira, P. Arrested B lymphopoiesis and persistence of activated B cells in adult interleukin 7−/– mice. J. Exp. Med. 194, 1141–1150 (2001).

    Article  CAS  Google Scholar 

  6. Sitnicka, E. et al. Complementary signaling through flt3 and interleukin-7 receptor α is indispensable for fetal and adult B cell genesis. J. Exp. Med. 198, 1495–1506 (2003).

    Article  CAS  Google Scholar 

  7. Kikuchi, K. & Kondo, M. Developmental switch of mouse hematopoietic stem cells from fetal to adult type occurs in bone marrow after birth. Proc. Natl. Acad. Sci. USA 103, 17852–17857 (2006).

    Article  CAS  Google Scholar 

  8. von Freeden-Jeffry, U. et al. Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J. Exp. Med. 181, 1519–1526 (1995).

    Article  CAS  Google Scholar 

  9. Kikuchi, K., Lai, A.Y., Hsu, C.L. & Kondo, M. IL-7 receptor signaling is necessary for stage transition in adult B cell development through up-regulation of EBF. J. Exp. Med. 201, 1197–1203 (2005).

    Article  CAS  Google Scholar 

  10. Dias, S., Silva, H., Cumano, A. & Vieira, P. Interleukin-7 is necessary to maintain the B cell potential in common lymphoid progenitors. J. Exp. Med. 201, 971–979 (2005).

    Article  CAS  Google Scholar 

  11. Malin, S. et al. Role of STAT5 in controlling cell survival and immunoglobulin gene recombination during pro-B cell development. Nat. Immunol. 11, 171–179 (2010).

    Article  CAS  Google Scholar 

  12. Lin, H. & Grosschedl, R. Failure of B-cell differentiation in mice lacking the transcription factor EBF. Nature 376, 263–267 (1995).

    Article  CAS  Google Scholar 

  13. Busslinger, M. Transcriptional control of early B cell development. Annu. Rev. Immunol. 22, 55–79 (2004).

    Article  CAS  Google Scholar 

  14. Yabas, M. et al. ATP11C is critical for the internalization of phosphatidylserine and differentiation of B lymphocytes. Nat. Immunol. advance online publication, doi:10.1038/ni.2011 (20 March 2011).

  15. Nelms, K.A. & Goodnow, C.C. Genome-wide ENU mutagenesis to reveal immune regulators. Immunity 15, 409–418 (2001).

    Article  CAS  Google Scholar 

  16. Hardy, R.R., Carmack, C.E., Shinton, S.A., Kemp, J.D. & Hayakawa, K. Resolution and characterization of pro-B and pre-pro-B cell stages in normal mouse bone marrow. J. Exp. Med. 173, 1213–1225 (1991).

    Article  CAS  Google Scholar 

  17. Karasuyama, H. et al. The expression of Vpre-B/λ5 surrogate light chain in early bone marrow precursor B cells of normal and B cell-deficient mutant mice. Cell 77, 133–143 (1994).

    Article  CAS  Google Scholar 

  18. Jensen, C.T. et al. FLT3 ligand and not TSLP is the key regulator of IL-7-independent B-1 and B-2 B lymphopoiesis. Blood 112, 2297–2304 (2008).

    Article  CAS  Google Scholar 

  19. Watanabe-Fukunaga, R., Brannan, C.I., Copeland, N.G., Jenkins, N.A. & Nagata, S. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356, 314–317 (1992).

    Article  CAS  Google Scholar 

  20. Bouillet, P. et al. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 286, 1735–1738 (1999).

    Article  CAS  Google Scholar 

  21. Strasser, A. et al. Enforced BCL2 expression in B-lymphoid cells prolongs antibody responses and elicits autoimmune disease. Proc. Natl. Acad. Sci. USA 88, 8661–8665 (1991).

    Article  CAS  Google Scholar 

  22. Herzog, S., Reth, M. & Jumaa, H. Regulation of B-cell proliferation and differentiation by pre-B-cell receptor signalling. Nat. Rev. Immunol. 9, 195–205 (2009).

    Article  CAS  Google Scholar 

  23. Brink, R. et al. Immunoglobulin M and D antigen receptors are both capable of mediating B lymphocyte activation, deletion, or anergy after interaction with specific antigen. J. Exp. Med. 176, 991–1005 (1992).

    Article  CAS  Google Scholar 

  24. Phan, T.G. et al. B cell receptor-independent stimuli trigger immunoglobulin (Ig) class switch recombination and production of IgG autoantibodies by anergic self-reactive B cells. J. Exp. Med. 197, 845–860 (2003).

    Article  CAS  Google Scholar 

  25. Pelanda, R., Schaal, S., Torres, R.M. & Rajewsky, K. A prematurely expressed Igκ transgene, but not VκJκ gene segment targeted into the Igκ locus, can rescue B cell development in λ5-deficient mice. Immunity 5, 229–239 (1996).

    Article  CAS  Google Scholar 

  26. Spanopoulou, E. et al. Functional immunoglobulin transgenes guide ordered B-cell differentiation in Rag-1-deficient mice. Genes Dev. 8, 1030–1042 (1994).

    Article  CAS  Google Scholar 

  27. Chang, Y.F., Imam, J.S. & Wilkinson, M.F. The nonsense-mediated decay RNA surveillance pathway. Annu. Rev. Biochem. 76, 51–74 (2007).

    Article  CAS  Google Scholar 

  28. Su, A.I. et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc. Natl. Acad. Sci. USA 101, 6062–6067 (2004).

    Article  CAS  Google Scholar 

  29. Bull, L.N. et al. A gene encoding a P-type ATPase mutated in two forms of hereditary cholestasis. Nat. Genet. 18, 219–224 (1998).

    Article  CAS  Google Scholar 

  30. Kühlbrandt, W. Biology, structure and mechanism of P-type ATPases. Nat. Rev. Mol. Cell Biol. 5, 282–295 (2004).

    Article  Google Scholar 

  31. Tang, X., Halleck, M.S., Schlegel, R.A. & Williamson, P. A subfamily of P-type ATPases with aminophospholipid transporting activity. Science 272, 1495–1497 (1996).

    Article  CAS  Google Scholar 

  32. Holthuis, J.C. & Levine, T.P. Lipid traffic: floppy drives and a superhighway. Nat. Rev. Mol. Cell Biol. 6, 209–220 (2005).

    Article  CAS  Google Scholar 

  33. Leventis, P.A. & Grinstein, S. The distribution and function of phosphatidylserine in cellular membranes. Annu Rev Biophys. 39, 407–427 (2010).

    Article  CAS  Google Scholar 

  34. Dykstra, M., Cherukuri, A., Sohn, H.W., Tzeng, S.J. & Pierce, S.K. Location is everything: lipid rafts and immune cell signaling. Annu. Rev. Immunol. 21, 457–481 (2003).

    Article  CAS  Google Scholar 

  35. Guo, B., Kato, R.M., Garcia-Lloret, M., Wahl, M.I. & Rawlings, D.J. Engagement of the human pre-B cell receptor generates a lipid raft-dependent calcium signaling complex. Immunity 13, 243–253 (2000).

    Article  CAS  Google Scholar 

  36. Fruman, D.A. & Cantley, L.C. Phosphoinositide 3-kinase in immunological systems. Semin. Immunol. 14, 7–18 (2002).

    Article  CAS  Google Scholar 

  37. Anzelon, A.N., Wu, H. & Rickert, R.C. Pten inactivation alters peripheral B lymphocyte fate and reconstitutes CD19 function. Nat. Immunol. 4, 287–294 (2003).

    Article  CAS  Google Scholar 

  38. Janas, M.L. et al. The effect of deleting p110δ on the phenotype and function of PTEN-deficient B cells. J. Immunol. 180, 739–746 (2008).

    Article  CAS  Google Scholar 

  39. Miosge, L.A. & Goodnow, C.C. Genes, pathways and checkpoints in lymphocyte development and homeostasis. Immunol. Cell Biol. 83, 318–335 (2005).

    Article  CAS  Google Scholar 

  40. Raff, M.C., Megson, M., Owen, J.J. & Cooper, M.D. Early production of intracellular IgM by B-lymphocyte precursors in mouse. Nature 259, 224–226 (1976).

    Article  CAS  Google Scholar 

  41. Peschon, J.J. et al. Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J. Exp. Med. 180, 1955–1960 (1994).

    Article  CAS  Google Scholar 

  42. Grabstein, K.H. et al. Inhibition of murine B and T lymphopoiesis in vivo by an anti-interleukin 7 monoclonal antibody. J. Exp. Med. 178, 257–264 (1993).

    Article  CAS  Google Scholar 

  43. Vosshenrich, C.A., Cumano, A., Müller, W., Di Santo, J.P. & Vieira, P. Thymic stromal-derived lymphopoietin distinguishes fetal from adult B cell development. Nat. Immunol. 4, 773–779 (2003).

    Article  CAS  Google Scholar 

  44. Purohit, S.J. et al. Determination of lymphoid cell fate is dependent on the expression status of the IL-7 receptor. EMBO J. 22, 5511–5521 (2003).

    Article  CAS  Google Scholar 

  45. Roessler, S. et al. Distinct promoters mediate the regulation of Ebf1 gene expression by interleukin-7 and Pax5. Mol. Cell. Biol. 27, 579–594 (2007).

    Article  CAS  Google Scholar 

  46. Kikuchi, K., Kasai, H., Watanabe, A., Lai, A.Y. & Kondo, M. IL-7 specifies B cell fate at the common lymphoid progenitor to pre-proB transition stage by maintaining early B cell factor expression. J. Immunol. 181, 383–392 (2008).

    Article  CAS  Google Scholar 

  47. Eidenschenk, C. et al. Flt3 permits survival during infection by rendering dendritic cells competent to activate NK cells. Proc. Natl. Acad. Sci. USA 107, 9759–9764 (2010).

    Article  CAS  Google Scholar 

  48. Croker, B.A. et al. Inflammation and autoimmunity caused by a SHP1 mutation depend on IL-1, MyD88, and a microbial trigger. Proc. Natl. Acad. Sci. USA 105, 15028–15033 (2008).

    Article  CAS  Google Scholar 

  49. Georgel, P., Du, X., Hoebe, K. & Beutler, B.A. ENU mutagenesis in mice. Methods Mol. Biol. 415, 1–16 (2008).

    CAS  PubMed  Google Scholar 

  50. Rickert, R.C., Rajewsky, K. & Roes, J. Impairment of T-cell-dependent B-cell responses and B-1 cell development in CD19-deficient mice. Nature 376, 352–355 (1995).

    Article  CAS  Google Scholar 

  51. Gavin, A.L. et al. Adjuvant-enhanced antibody responses in the absence of toll-like receptor signaling. Science 314, 1936–1938 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Gutierrez for animal care; T. Robinson, S. Kalina and C. Ross for genotyping; C. Goodnow (John Curtin School of Medical Research) and R. Brink (Garvan Institute) for mice; A. Feeney for discussions; and D. La Vine for Figure 6f. Supported by the Bill & Melinda Gates Foundation, the National Institute of Allergy and Infectious Diseases of the National Institutes of Health (HHSN272200700038C to (B.B.), The General Sir John Monash Foundation (O.M.S.) and the Cancer Research Institute (C.N.A.).

Author information

Authors and Affiliations

Authors

Contributions

O.M.S. designed and did experiments, analyzed data and wrote the paper under the guidance of B.B.; C.N.A. and E.P. identified the spelling phenotype and assisted with immunization experiments; Y.X. and P.L. assisted with positional cloning and mutation identification; and C.H. measured immunoglobulin isotypes with reagents that D.N. contributed.

Corresponding author

Correspondence to Bruce Beutler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 3330 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siggs, O., Arnold, C., Huber, C. et al. The P4-type ATPase ATP11C is essential for B lymphopoiesis in adult bone marrow. Nat Immunol 12, 434–440 (2011). https://doi.org/10.1038/ni.2012

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2012

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing