Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epigenetic repression of the Igk locus by STAT5-mediated recruitment of the histone methyltransferase Ezh2

Abstract

During B lymphopoiesis, recombination of the locus encoding the immunoglobulin κ-chain complex (Igk) requires expression of the precursor to the B cell antigen receptor (pre-BCR) and escape from signaling via the interleukin 7 receptor (IL-7R). By activating the transcription factor STAT5, IL-7R signaling maintains proliferation and represses Igk germline transcription by unknown mechanisms. We demonstrate that a STAT5 tetramer bound the Igk intronic enhancer (Eκi), which led to recruitment of the histone methyltransferase Ezh2. Ezh2 marked trimethylation of histone H3 at Lys27 (H3K27me3) throughout the κ-chain joining region (Jκ) to the κ-chain constant region (Cκ). In the absence of Ezh2, IL-7 failed to repress Igk germline transcription. H3K27me3 modifications were lost after termination of IL-7R–STAT5 signaling, and the transcription factor E2A bound Eκi, which resulted in acquisition of H3K4me1 and acetylated histone H4 (H4Ac). Genome-wide analyses showed a STAT5 tetrameric binding motif associated with transcriptional repression. Our data demonstrate how IL-7R signaling represses Igk germline transcription and provide a general model for STAT5-mediated epigenetic transcriptional repression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Binding of STAT5 at κS2 in Eκi is functionally important.
Figure 2: STAT5 and E2A compete for binding at their respective Eκi sites.
Figure 3: Epigenetic regulation of Eκi during B lymphopoiesis.
Figure 4: STAT5 and E2A mediate repressive and activation marks, respectively, from Jκ through Cκ.
Figure 5: Binding of tetrameric STAT5 to κS2 recruits Ezh2 and represses Igk germline transcription.
Figure 6: Binding of tetrameric STAT5 mediates H3K27 trimethylation in vivo.
Figure 7: Trimethylation of H3K27 correlates with STAT5 target genes repressed throughout B cell development.

Similar content being viewed by others

Accession codes

Accessions

Mouse Genome Informatics

References

  1. Clark, M.R., Cooper, A.B., Wang, L. & Aifantis, I. The pre-B cell receptor in B cell development: recent advances, persistent questions and conserved mechanisms. Curr. Top. Microbiol. Immunol. 290, 87–103 (2005).

    CAS  Google Scholar 

  2. Pelanda, R., Braun, U., Hobeika, E., Nussenzweig, M.C. & Reth, M.B cell progenitors are arrested in maturation but have intact VDJ recombination in the absence of Ig-α and Ig-β. J. Immunol. 169, 865–872 (2002).

    Article  CAS  Google Scholar 

  3. Shimizu, T., Mundt, C., Licence, S., Melchers, F. & Martensson, I. VpreB1/VpreB2/lambda 5 triple-deficient mice show impaired B cell development but functional allelic exclusion of the IgH locus. J. Immunol. 168, 6286–6293 (2002).

    Article  CAS  Google Scholar 

  4. Herzog, S., Reth, M. & Jumaa, H. Regulation of B-cell proliferation and differentiation by pre-B-cell receptor signalling. Nat. Rev. Immunol. 9, 195–205 (2009).

    Article  CAS  PubMed  Google Scholar 

  5. Erlandsson, L. et al. Both the pre-BCR and the IL-7Rα are essential for expansion at the pre-BII cell stage in vivo. Eur. J. Immunol. 35, 1969–1976 (2005).

    Article  CAS  Google Scholar 

  6. Fleming, H.E. & Paige, C.J. Pre-B cell receptor signaling mediates selective response to IL-7 at the pro-B to pre-B cell transition via an ERK/MAP kinase-dependent pathway. Immunity 15, 521–531 (2001).

    Article  CAS  Google Scholar 

  7. Zhang, L., Reynolds, T.L., Shan, S. & Desiderio, S. Coupling of V(D)J recombination to cell cycle suppresses genomic instability and lymphoid tumorigenesis. Immunity 34, 163–174 (2011).

    Article  PubMed  Google Scholar 

  8. Alt, F.W., Blackwell, T.K. & Yancopoulos, G.D. Development of the primary antibody repertoire. Science 238, 1079–1087 (1987).

    Article  CAS  PubMed  Google Scholar 

  9. Schlissel, M.S. & Stanhope-Baker, P. Accessibility and the developmental regulation of V(D)J recombination. Semin. Immunol. 9, 161–170 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Amin, R.H. et al. Biallelic, ubiquitous transcription from the distal germline Ig-κ locus promoter during B cell development. Proc. Natl. Acad. Sci. USA 106, 522–527 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. Schlissel, M.S. Regulation of activation and recombination of the murine Ig-κ locus. Immunol. Rev. 200, 215–223 (2004).

    Article  CAS  Google Scholar 

  12. Gorman, J.R. et al. The Igκ 3′ enhancer influences the ratio of Igκ versus Igλ B lymphocytes. Immunity 5, 241–252 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Inlay, M., Alt, F.W., Baltimore, D. & Xu, Y. Essential roles of the κ-light chain intronic enhancer and 3′ enhancer in κ rearrangement and demethylation. Nat. Immunol. 3, 463–468 (2002).

    Article  CAS  Google Scholar 

  14. Xu, Y., Davidson, L., Alt, F.W. & Baltimore, D. Deletion of the Ig-κ light chain intronic enhancer/matrix attachment region impairs but does not abolish VκJκ rearrangement. Immunity 4, 377–385 (1996).

    Article  CAS  Google Scholar 

  15. Lazorchak, A.S., Schlissel, M.S. & Zhuang, Y. E2A and IRF-4/Pip promote chromatin modification and transcription of the immunoglobulin κ locus in pre-B cells. Mol. Cell Biol. 26, 810–821 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Mandal, M. et al. Ras orchestrates cell cycle exit and light chain recombination during early B cell development. Nat. Immunol. 10, 1110–1117 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. Inlay, M.A., Tian, H., Lin, T. & Xu, Y. Important roles for E protein binding sites within the immunoglobulin κ chain intronic enhance in activating V-κ J-κ rearrangement. J. Exp. Med. 200, 1205–1211 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Bain, G. et al. E2A proteins are required for proper B cell development and initiation of immunoglobulin gene rearrangements. Cell 79, 885–892 (1994).

    Article  CAS  Google Scholar 

  19. Johnson, K. et al. Regulation of immunoglobulin light-chain recombination by the transcription factor IRF-4 and the attenuation of interleukin-7 signaling. Immunity 28, 335–345 (2008).

    Article  CAS  Google Scholar 

  20. Lu, R., Kay, L., Lancki, D.W. & Singh, H. IRF-4,8 orchestrate the pre-B to B transition in lymphocyte development. Genes Dev. 17, 1703–1708 (2003).

    Article  CAS  PubMed  Google Scholar 

  21. Ma, S., Turetsky, A., Trinh, L. & Lu, R. IFN regulatory factor 4 and 8 promote Ig light chain κ locus activation in pre-B cell development. J. Immunol. 177, 7898–7904 (2006).

    Article  CAS  Google Scholar 

  22. Cedar, H. & Bergman, Y. Epigenetics of haematopoietic cell development. Nat. Rev. Immunol. 11, 478–488 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Xu, C.-R. & Feeney, A.J. The epigenetic profile of Ig genes is dynamically regulated during B cell differentiation and is modulated by pre-B cell receptor signaling. J. Immunol. 182, 1362–1369 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Beck, K., Peak, M.M., Ota, T., Nemazee, D. & Murre, C. Distinct roles for E12 and E47 in B cell specification and the sequential rearrangement of immunoglobulin light chain loci. J. Exp. Med. 206, 2271–2284 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Lin, Y.C. et al. A global network of transcription factors, involving E2A, EBF1 and Foxo1, that orchestrates B cell fate. Nat. Immunol. 11, 635–643 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Liu, Y., Subrahmanyam, R., Chakroborty, T., Sen, R. & Desiderio, S. A plant homeodomain in RAG-2 that binds hypermethylated lysine 4 of histone H3 is necessary for efficient antigen-receptor-gene rearrangement. Immunity 27, 561–571 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Ji, Y. et al. The in vivo pattern of binding of RAG1 and RAG2 to antigen receptor loci. Cell 141, 419–431 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. Flemming, A., Brummer, T., Reth, M. & Jumaa, H. The adaptor protein SLP-65 acts as a tumor suppressor that limits pre-B cell expansion. Nat. Immunol. 4, 38–43 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Xu, S., Lee, K.G., Huo, J., Kurosaki, T. & Lam, K.P. Combined deficiencies in Bruton tyrosine kinase and phospholipase Cγ2 arrest B-cell development at a pre-BCR+ stage. Blood 109, 3377–3384 (2007).

    Article  CAS  Google Scholar 

  30. van Loo, P.F., Dingjan, G.M., Maas, A. & Hendriks, R.W. Surrogate-light-chain silencing is not critical for the limitation of pre-B cell expansion but is for the termination of constitutive signaling. Immunity 27, 1–13 (2007).

    Article  Google Scholar 

  31. Malin, S. et al. Role of STAT5 in controlling cell survival and immunoglobulin gene recombination during pro-B cell development. Nat. Immunol. 11, 171–179 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. Herzog, S. et al. SLP-65 regulates immunoglobulin light chain gene recombination through the PI(3)K-PKB-Foxo pathway. Nat. Immunol. 9, 623–631 (2008).

    Article  CAS  Google Scholar 

  33. Tokoyoda, K., Egawa, T., Sugiyama, T., Choi, B.I. & Nagasawa, T. Cellular niches controlling B lymphocyte behavior within bone marrow during development. Immunity 20, 335–344 (2004).

    Article  Google Scholar 

  34. Sen, R. & Baltimore, D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46, 705–716 (1986).

    Article  CAS  PubMed  Google Scholar 

  35. Heintzman, N.D. et al. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459, 108–112 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Vettermann, C. & Schlissel, M.S. Allelic exclusion of immunoglobulin genes: models and mechanisms. Immunol. Rev. 237, 22–42 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Quong, M.W. et al. Receptor editing and marginal zone B cell development are regulated by the helix-loop-helix protein, E2A. J. Exp. Med. 199, 1101–1112 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Romanow, W.J. et al. E2A and EBF act in synergy with the V(D)J recombinase to generate a diverse immunoglobulin repertoire in nonlymphoid cells. Mol. Cell 5, 343–353 (2000).

    Article  CAS  Google Scholar 

  39. Margueron, R. & Reinberg, D. The polycomb complex PRC2 and its mark in life. Nature 469, 343–349 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Su, I.H. et al. Ezh2 controls B cell development through histone H3 methylation and Igh rearrangement. Nat. Immunol. 4, 124–131 (2003).

    Article  CAS  Google Scholar 

  41. Stocklin, E., Wissler, M., Gouilleux, F. & Groner, B. Functional interactions between Stat5 and the glucocorticoid receptor. Nature 383, 726–728 (1996).

    Article  CAS  PubMed  Google Scholar 

  42. Kornfeld, J.-W. et al. The different functions of Stat5 and chromatin alteration through Stat5 proteins. Front. Biosci. 13, 6237–6254 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Moriggl, R. et al. Stat5 tetramer formation is associated with leukemogenesis. Cancer Cell 7, 87–99 (2005).

    Article  CAS  PubMed  Google Scholar 

  44. Soldaini, E. et al. DNA binding site selection of dimeric and tetrameric Stat5 proteins reveals a large repertoire of divergent tetrameric Stat5a binding sites. Mol. Cell Biol. 20, 389–401 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Bertolino, E. et al. Regulation of interleukin 7-dependent immunoglobulin heavy-chain variable gene rearrangements by transcription factor STAT5. Nat. Immunol. 6, 836–843 (2005).

    Article  CAS  Google Scholar 

  46. Northrup, D.L. & Zhao, K. Application of ChIP-seq and related techniques to the study of immune function. Immunity 34, 830–842 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Zee, B.M. et al. In vivo residue-specific histone mehtylation dynamics. J. Biol. Chem. 285, 3341–3350 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Spicuglia, S. et al. TCRα enhancer activation occurs via a conformational change of a pre-assembled nucleoprotein complex. EMBO J. 19, 2034–2045 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Yang, X.-P. Opposing regulation of the locus encoding IL-17 through direct, reciprocal actions of STAT3 and STAT5. Nat. Immunol. 12, 247–254 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Cooper, A.B. et al. A unique function for cyclin D3 in early B cell development. Nat. Immunol. 7, 489–497 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Singh and U. Storb for discussions; R. Duggan and D. Leclerc for cell-sorting services; and the ImmGen Consortium for data assembly. Supported by the US National Institutes of Health (GM088847 to M.R.C. and CA099978 to B.L.K.), the US Department of Energy (M.M.-C.), the Chicago National Institutes of Health Systems Biology Center (P50 GM081892 to A.R.D.) and the Leukemia and Lymphoma Society (B.L.K.).

Author information

Authors and Affiliations

Authors

Contributions

M.M. designed, did and analyzed most of the experiments and prepared the first draft of the paper; S.E.P. assisted in the design and analysis of many experiments; M.M.-C. compared mRNA expression and ChIP-Seq data, assisted by K.M.H.; E.T.B. assisted in the ChIP-Seq analysis. B.L.K. provided E2A-specific reagents and contributed to the design of some experiments; A.R.D. oversaw the analysis of microarray and ChIP-Seq data; and M.R.C. oversaw the entire project and prepared the final manuscript.

Corresponding author

Correspondence to Marcus R Clark.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Tables 1–5 (PDF 10209 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandal, M., Powers, S., Maienschein-Cline, M. et al. Epigenetic repression of the Igk locus by STAT5-mediated recruitment of the histone methyltransferase Ezh2. Nat Immunol 12, 1212–1220 (2011). https://doi.org/10.1038/ni.2136

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2136

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing