Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

Molecular definition of the identity and activation of natural killer cells

Abstract

Using whole-genome microarray data sets of the Immunological Genome Project, we demonstrate a closer transcriptional relationship between NK cells and T cells than between any other leukocytes, distinguished by their shared expression of genes encoding molecules with similar signaling functions. Whereas resting NK cells are known to share expression of a few genes with cytotoxic CD8+ T cells, our transcriptome-wide analysis demonstrates that the commonalities extend to hundreds of genes, many encoding molecules with unknown functions. Resting NK cells demonstrate a 'preprimed' state compared with naive T cells, which allows NK cells to respond more rapidly to viral infection. Collectively, our data provide a global context for known and previously unknown molecular aspects of NK cell identity and function by delineating the genome-wide repertoire of gene expression of NK cells in various states.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NK cells and T cells show close similarity at the transcriptome level.
Figure 2: Organization of the innate and adaptive branches of the NK cell–T cell complex.
Figure 3: Molecular uniqueness of resting NK cells.
Figure 4: Naive NK cells are primed for effector responses.
Figure 5: The response of Ly49H+ NK cells to MCMV infection is dominated by an early activation response, followed by effector and memory responses.
Figure 6: Common effector mechanisms of NK cells and CD8+ T cells.
Figure 7: Common memory responses of NK cells and CD8+ T cells.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

References

  1. Heng, T.S. & Painter, M.W. The Immunological Genome Project: networks of gene expression in immune cells. Nat. Immunol. 9, 1091–1094 (2008).

    Article  CAS  Google Scholar 

  2. Bendelac, A., Bonneville, M. & Kearney, J.F. Autoreactivity by design: innate B and T lymphocytes. Nat. Rev. Immunol. 1, 177–186 (2001).

    Article  CAS  Google Scholar 

  3. Vivier, E. et al. Innate or adaptive immunity? The example of natural killer cells. Science 331, 44–49 (2011).

    Article  CAS  Google Scholar 

  4. Herberman, R.B., Nunn, M.E., Holden, H.T. & Lavrin, D.H. Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells. Int. J. Cancer 16, 230–239 (1975).

    Article  CAS  Google Scholar 

  5. Kiessling, R., Klein, E., Pross, H. & Wigzell, H. “Natural” killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cell. Eur. J. Immunol. 5, 117–121 (1975).

    Article  CAS  Google Scholar 

  6. Lanier, L.L. & Phillips, J.H. Ontogeny of natural killer cells. Nature 319, 269–270 (1986).

    Article  CAS  Google Scholar 

  7. Di Santo, J.P. Natural killer cell developmental pathways: a question of balance. Annu. Rev. Immunol. 24, 257–286 (2006).

    Article  CAS  Google Scholar 

  8. Yamagata, T., Benoist, C. & Mathis, D. A shared gene-expression signature in innate-like lymphocytes. Immunol. Rev. 210, 52–66 (2006).

    Article  CAS  Google Scholar 

  9. Chambers, S.M. et al. Hematopoietic fingerprints: an expression database of stem cells and their progeny. Cell Stem Cell 1, 578–591 (2007).

    Article  CAS  Google Scholar 

  10. Obata-Onai, A. et al. Comprehensive gene expression analysis of human NK cells and CD8+ T lymphocytes. Int. Immunol. 14, 1085–1098 (2002).

    Article  CAS  Google Scholar 

  11. Hanna, J. et al. Novel insights on human NK cells' immunological modalities revealed by gene expression profiling. J. Immunol. 173, 6547–6563 (2004).

    Article  CAS  Google Scholar 

  12. Dybkaer, K. et al. Genome wide transcriptional analysis of resting and IL2 activated human natural killer cells: gene expression signatures indicative of novel molecular signaling pathways. BMC Genomics 8, 230 (2007).

    Article  Google Scholar 

  13. Lanier, L.L. Up on the tightrope: natural killer cell activation and inhibition. Nat. Immunol. 9, 495–502 (2008).

    Article  CAS  Google Scholar 

  14. Bezman, N. & Koretzky, G.A. Compartmentalization of ITAM and integrin signaling by adapter molecules. Immunol. Rev. 218, 9–28 (2007).

    Article  CAS  Google Scholar 

  15. Pont, F. et al. The gene expression profile of phosphoantigen-specific human gammadelta T lymphocytes is a blend of αβ T-cell and NK-cell signatures. Eur. J. Immunol. 42, 228–240 (2012).

    Article  CAS  Google Scholar 

  16. Wilson, S.B. & Byrne, M.C. Gene expression in NKT cells: defining a functionally distinct CD1d-restricted T cell subset. Curr. Opin. Immunol. 13, 555–561 (2001).

    Article  CAS  Google Scholar 

  17. Hesslein, D.G. & Lanier, L.L. Transcriptional control of natural killer cell development and function. Adv. Immunol. 109, 45–85 (2011).

    Article  CAS  Google Scholar 

  18. Sun, Y. et al. Potentiation of Smad-mediated transcriptional activation by the RNA-binding protein RBPMS. Nucleic Acids Res. 34, 6314–6326 (2006).

    Article  CAS  Google Scholar 

  19. Li, M.O. & Flavell, R.A. TGF-β: a master of all T cell trades. Cell 134, 392–404 (2008).

    Article  CAS  Google Scholar 

  20. Akbulut, S. et al. Sprouty proteins inhibit receptor-mediated activation of phosphatidylinositol-specific phospholipase C. Mol. Biol. Cell 21, 3487–3496 (2010).

    Article  CAS  Google Scholar 

  21. Narni-Mancinelli, E. et al. Fate mapping analysis of lymphoid cells expressing the NKp46 cell surface receptor. Proc. Natl. Acad. Sci. USA 108, 18324–18329 (2011).

    Article  CAS  Google Scholar 

  22. Yu, J. et al. NKp46 identifies an NKT cell subset susceptible to leukemic transformation in mouse and human. J. Clin. Invest. 121, 1456–1470 (2011).

    Article  CAS  Google Scholar 

  23. Satoh-Takayama, N. et al. Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. Immunity 29, 958–970 (2008).

    Article  CAS  Google Scholar 

  24. Walzer, T. et al. Natural killer cell trafficking in vivo requires a dedicated sphingosine 1-phosphate receptor. Nat. Immunol. 8, 1337–1344 (2007).

    Article  CAS  Google Scholar 

  25. Despoix, N. et al. Mouse CD146/MCAM is a marker of natural killer cell maturation. Eur. J. Immunol. 38, 2855–2864 (2008).

    Article  CAS  Google Scholar 

  26. Arase, H., Saito, T., Phillips, J.H. & Lanier, L.L. Cutting edge: the mouse NK cell-associated antigen recognized by DX5 monoclonal antibody is CD49b (α2 integrin, very late antigen-2). J. Immunol. 167, 1141–1144 (2001).

    Article  CAS  Google Scholar 

  27. Ewen, C.L., Kane, K.P. & Bleackley, R.C. A quarter century of granzymes. Cell Death Differ. 19, 28–35 (2012).

    Article  CAS  Google Scholar 

  28. Young, J.D., Hengartner, H., Podack, E.R. & Cohn, Z.A. Purification and characterization of a cytolytic pore-forming protein from granules of cloned lymphocytes with natural killer activity. Cell 44, 849–859 (1986).

    Article  CAS  Google Scholar 

  29. Colige, A. et al. Cloning and characterization of ADAMTS-14, a novel ADAMTS displaying high homology with ADAMTS-2 and ADAMTS-3. J. Biol. Chem. 277, 5756–5766 (2002).

    Article  CAS  Google Scholar 

  30. Hirst, C.E. et al. The intracellular granzyme B inhibitor, proteinase inhibitor 9, is up-regulated during accessory cell maturation and effector cell degranulation, and its overexpression enhances CTL potency. J. Immunol. 170, 805–815 (2003).

    Article  CAS  Google Scholar 

  31. Zhang, M. et al. Serine protease inhibitor 6 protects cytotoxic T cells from self-inflicted injury by ensuring the integrity of cytotoxic granules. Immunity 24, 451–461 (2006).

    Article  CAS  Google Scholar 

  32. Liu, L. et al. A novel protein tyrosine kinase NOK that shares homology with platelet-derived growth factor/fibroblast growth factor receptors induces tumorigenesis and metastasis in nude mice. Cancer Res. 64, 3491–3499 (2004).

    Article  CAS  Google Scholar 

  33. Kaech, S.M., Hemby, S., Kersh, E. & Ahmed, R. Molecular and functional profiling of memory CD8 T cell differentiation. Cell 111, 837–851 (2002).

    Article  CAS  Google Scholar 

  34. Kallies, A., Xin, A., Belz, G.T. & Nutt, S.L. Blimp-1 transcription factor is required for the differentiation of effector CD8+ T cells and memory responses. Immunity 31, 283–295 (2009).

    Article  CAS  Google Scholar 

  35. Shin, H. et al. A role for the transcriptional repressor Blimp-1 in CD8+ T cell exhaustion during chronic viral infection. Immunity 31, 309–320 (2009).

    Article  CAS  Google Scholar 

  36. Sun, J.C., Lopez-Verges, S., Kim, C.C., DeRisi, J.L. & Lanier, L.L. NK cells and immune “memory”. J. Immunol 186, 1891–1897 (2011).

    Article  CAS  Google Scholar 

  37. Trinchieri, G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat. Rev. Immunol. 3, 133–146 (2003).

    Article  CAS  Google Scholar 

  38. Palmer, D.C. & Restifo, N.P. Suppressors of cytokine signaling (SOCS) in T cell differentiation, maturation, and function. Trends Immunol. 30, 592–602 (2009).

    Article  CAS  Google Scholar 

  39. Lee, S.H., Kim, K.S., Fodil-Cornu, N., Vidal, S.M. & Biron, C.A. Activating receptors promote NK cell expansion for maintenance, IL-10 production, and CD8 T cell regulation during viral infection. J. Exp. Med. 206, 2235–2251 (2009).

    Article  CAS  Google Scholar 

  40. Sun, J.C., Beilke, J.N. & Lanier, L.L. Adaptive immune features of natural killer cells. Nature 457, 557–561 (2009).

    Article  CAS  Google Scholar 

  41. Xue, L., Chiang, L., He, B., Zhao, Y.Y. & Winoto, A. FoxM1, a forkhead transcription factor is a master cell cycle regulator for mouse mature T cells but not double positive thymocytes. PLoS ONE 5, e9229 (2011).

    Article  Google Scholar 

  42. Zhou, M. et al. Kruppel-like transcription factor 13 regulates T lymphocyte survival in vivo. J. Immunol. 178, 5496–5504 (2007).

    Article  CAS  Google Scholar 

  43. O'Leary, J.G., Goodarzi, M., Drayton, D.L. & von Andrian, U.H. T cell- and B cell- independent adaptive immunity mediated by natural killer cells. Nat. Immunol. 7, 507–516 (2006).

    Article  CAS  Google Scholar 

  44. Sun, J.C. & Lanier, L.L. NK cell development, homeostasis and function: parallels with CD8 T cells. Nat. Rev. Immunol. 11, 645–(2011).

  45. Cui, W. & Kaech, S.M. Generation of effector CD8+ T cells and their conversion to memory T cells. Immunol. Rev. 236, 151–166 (2010).

    Article  CAS  Google Scholar 

  46. Wherry, E.J. et al. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity 27, 670–684 (2007).

    Article  CAS  Google Scholar 

  47. Albrecht, I. et al. Persistence of effector memory Th1 cells is regulated by Hopx. Eur. J. Immunol. 40, 2993–3006 (2010).

    Article  CAS  Google Scholar 

  48. Hawiger, D., Wan, Y.Y., Eynon, E.E. & Flavell, R.A. The transcription cofactor Hopx is required for regulatory T cell function in dendritic cell-mediated peripheral T cell unresponsiveness. Nat. Immunol. 11, 962–968 (2010).

    Article  CAS  Google Scholar 

  49. Malhotra, D. et al. Transcriptional profiling of stroma from inflamed and resting lymph nodes defines immunological hallmarks. Nat. Immunol. 13, 499–510 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Weiss (University of California, San Francisco) for antibody to Syk; the members of the ImmGen Consortium and M. Dozmorov for discussions; the ImmGen core team (M. Painter, J. Ericson and S. Davis) for data generation and processing; J. Jarjoura and J. Arakawa-Hoyt for assistance in cell sorting; A. Beaulieu, J. Karo and S. Madera for data from MCMV infection experiments; and eBioscience, Affymetrix and Expression Analysis for support of the ImmGen Project. Supported by the National Institute of Allergy and Infectious Diseases of the US National Institutes of Health (R24 AI072073 and R01 AI068129; T32AI060537 to D.W.H.; T32AI060536 to J.A.B.; and AI072117 to A.W.G.), the American Cancer Society (L.L.L. and N.A.B.), the Canadian Institutes of Health Research (G.M.-O.) and the Searle Scholars Program (J.C.S.).

Author information

Authors and Affiliations

Authors

Consortia

Contributions

C.C.K. analyzed data; N.A.B. and J.C.S. sorted cell subsets, did follow-up experiments and analyzed data; G.M.-O., D.W.H. and Y.K. did experiments; J.A.B. and A.W.G. designed and did the T cell studies; and N.A.B., C.C.K., J.C.S. and L.L.L. designed studies and wrote the paper.

Corresponding author

Correspondence to Lewis L Lanier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Full list of members and affiliations appears at the end of the paper.

Supplementary information

Supplementary Text and Figures

Supplementary Tables 1–5 and Notes 1–2 (PDF 3341 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bezman, N., Kim, C., Sun, J. et al. Molecular definition of the identity and activation of natural killer cells. Nat Immunol 13, 1000–1009 (2012). https://doi.org/10.1038/ni.2395

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2395

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing