Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanistic and structural insight into the functional dichotomy between IL-2 and IL-15

Abstract

Interleukin 15 (IL-15) and IL-2 have distinct immunological functions even though both signal through the receptor subunit IL-2Rβ and the common γ-chain (γc). Here we found that in the structure of the IL-15–IL-15Rα–IL-2Rβ–γc quaternary complex, IL-15 binds to IL-2Rβ and γc in a heterodimer nearly indistinguishable from that of the IL-2–IL-2Rα–IL-2Rβ–γc complex, despite their different receptor-binding chemistries. IL-15Rα substantially increased the affinity of IL-15 for IL-2Rβ, and this allostery was required for IL-15 trans signaling. Consistent with their identical IL-2Rβ–γc dimer geometries, IL-2 and IL-15 showed similar signaling properties in lymphocytes, with any differences resulting from disparate receptor affinities. Thus, IL-15 and IL-2 induced similar signals, and the cytokine specificity of IL-2Rα versus IL-15Rα determined cellular responsiveness. Our results provide new insights for the development of specific immunotherapeutics based on IL-15 or IL-2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The crystal structure of the quaternary IL-15 receptor complex.
Figure 2: Comparison of the site I interfaces of IL-15 and IL-2.
Figure 3: Comparison of the site II interfaces of IL-15 and IL-2.
Figure 4: Enhancement of IL-15–IL-2Rβ interaction by IL-15Rα.
Figure 5: Analysis of signaling by IL-2 and IL-15 in YT-1 human NK cells.
Figure 6: Analysis of signaling by IL-2 and IL-15 in primary mouse CD8+ cells.
Figure 7: RNA-sequencing analysis of gene transcription regulated by IL-2 and IL-15.
Figure 8: Confirmation of differences in the regulation of IL-2 and IL-15 target genes.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Waldmann, T.A. The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nat. Rev. Immunol. 6, 595–601 (2006).

    CAS  PubMed  Google Scholar 

  2. Rochman, Y., Spolski, R. & Leonard, W.J. New insights into the regulation of T cells by gamma(c) family cytokines. Nat. Rev. Immunol. 9, 480–490 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Sneller, M.C. et al. IL-15 administered by continuous infusion to rhesus macaques induces massive expansion of CD8+ T effector memory population in peripheral blood. Blood 118, 6845–6848 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Liao, W., Lin, J.X. & Leonard, W.J. IL-2 family cytokines: new insights into the complex roles of IL-2 as a broad regulator of T helper cell differentiation. Curr. Opin. Immunol. 23, 598–604 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wuest, S.C. et al. A role for interleukin-2 trans-presentation in dendritic cell-mediated T cell activation in humans, as revealed by daclizumab therapy. Nat. Med. 17, 604–609 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Stonier, S.W. & Schluns, K.S. Trans. -presentation: a novel mechanism regulating IL-15 delivery and responses. Immunol. Lett. 127, 85–92 (2010).

    CAS  PubMed  Google Scholar 

  7. Marks-Konczalik, J. et al. IL-2-induced activation-induced cell death is inhibited in IL-15 transgenic mice. Proc. Natl. Acad. Sci. USA 97, 11445–11450 (2000).

    CAS  PubMed  Google Scholar 

  8. Syed, R.S. et al. Efficiency of signalling through cytokine receptors depends critically on receptor orientation. Nature 395, 511–516 (1998).

    CAS  PubMed  Google Scholar 

  9. Wang, X., Rickert, M. & Garcia, K.C. Structure of the quaternary complex of interleukin-2 with its alpha, beta, and gammac receptors. Science 310, 1159–1163 (2005).

    CAS  PubMed  Google Scholar 

  10. Chirifu, M. et al. Crystal structure of the IL-15-IL-15Ralpha complex, a cytokine-receptor unit presented in trans. Nat. Immunol. 8, 1001–1007 (2007).

    CAS  PubMed  Google Scholar 

  11. Walter, T.S. et al. Lysine methylation as a routine rescue strategy for protein crystallization. Structure 14, 1617–1622 (2006).

    CAS  PubMed  Google Scholar 

  12. LaPorte, S.L. et al. Molecular and structural basis of cytokine receptor pleiotropy in the interleukin-4/13 system. Cell 132, 259–272 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Collins, L. et al. Identification of specific residues of human interleukin 2 that affect binding to the 70-kDa subunit (p70) of the interleukin 2 receptor. Proc. Natl. Acad. Sci. USA 85, 7709–7713 (1988).

    CAS  PubMed  Google Scholar 

  14. Eisenman, J. et al. Interleukin-15 interactions with interleukin-15 receptor complexes: characterization and species specificity. Cytokine 20, 121–129 (2002).

    CAS  PubMed  Google Scholar 

  15. Pettit, D.K. et al. Structure-function studies of interleukin 15 using site-specific mutagenesis, polyethylene glycol conjugation, and homology modeling. J. Biol. Chem. 272, 2312–2318 (1997).

    CAS  PubMed  Google Scholar 

  16. Zurawski, S.M. et al. Definition and spatial location of mouse interleukin-2 residues that interact with its heterotrimeric receptor. EMBO J. 12, 5113–5119 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Boulanger, M.J., Bankovich, A.J., Kortemme, T., Baker, D. & Garcia, K.C. Convergent mechanisms for recognition of divergent cytokines by the shared signaling receptor gp130. Mol. Cell 12, 577–589 (2003).

    CAS  PubMed  Google Scholar 

  18. McFarland, B.J. & Strong, R.K. Thermodynamic analysis of degenerate recognition by the NKG2D immunoreceptor: not induced fit but rigid adaptation. Immunity 19, 803–812 (2003).

    CAS  PubMed  Google Scholar 

  19. Dubois, S., Mariner, J., Waldmann, T.A. & Tagaya, Y. IL-15Ralpha recycles and presents IL-15 In trans to neighboring cells. Immunity 17, 537–547 (2002).

    CAS  PubMed  Google Scholar 

  20. Hanick, N.A. et al. Elucidation of the interleukin-15 binding site on its alpha receptor by NMR. Biochemistry 46, 9453–9461 (2007).

    CAS  PubMed  Google Scholar 

  21. Mortier, E. et al. Soluble interleukin-15 receptor alpha (IL-15R alpha)-sushi as a selective and potent agonist of IL-15 action through IL-15R beta/gamma. Hyperagonist IL-15 x IL-15R alpha fusion proteins. J. Biol. Chem. 281, 1612–1619 (2006).

    CAS  PubMed  Google Scholar 

  22. Rubinstein, M.P. et al. Converting IL-15 to a superagonist by binding to soluble IL-15R{alpha}. Proc. Natl. Acad. Sci. USA 103, 9166–9171 (2006).

    CAS  PubMed  Google Scholar 

  23. Rickert, M., Wang, X., Boulanger, M.J., Goriatcheva, N. & Garcia, K.C. The structure of interleukin-2 complexed with its alpha receptor. Science 308, 1477–1480 (2005).

    CAS  PubMed  Google Scholar 

  24. Levin, A.M. et al. Exploiting a natural conformational switch to engineer an interleukin-2 'superkine'. Nature 484, 529–533 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Balasubramanian, S. et al. Ligand binding kinetics of IL-2 and IL-15 to heteromers formed by extracellular domains of the three IL-2 receptor subunits. Int. Immunol. 7, 1839–1849 (1995).

    CAS  PubMed  Google Scholar 

  26. Thanos, C.D., Randal, M. & Wells, J.A. Potent small-molecule binding to a dynamic hot spot on IL-2. J. Am. Chem. Soc. 125, 15280–15281 (2003).

    CAS  PubMed  Google Scholar 

  27. Bowman, G.R., Huang, X. & Pande, V.S. Using generalized ensemble simulations and Markov state models to identify conformational states. Methods 49, 197–201 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Zambricki, E. et al. Signaling T-cell survival and death by IL-2 and IL-15. Am. J. Transplant. 5, 2623–2631 (2005).

    CAS  PubMed  Google Scholar 

  29. Castro, I., Yu, A., Dee, M.J. & Malek, T.R. The basis of distinctive IL-2- and IL-15-dependent signaling: weak CD122-dependent signaling favors CD8+ T central-memory cell survival but not T effector-memory cell development. J. Immunol. 187, 5170–5182 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Cornish, G.H., Sinclair, L.V. & Cantrell, D.A. Differential regulation of T-cell growth by IL-2 and IL-15. Blood 108, 600–608 (2006).

    CAS  PubMed  Google Scholar 

  31. Lindemann, M.J., Hu, Z., Benczik, M., Liu, K.D. & Gaffen, S.L. Differential regulation of the IL-17 receptor by gammac cytokines: inhibitory signaling by the phosphatidylinositol 3-kinase pathway. J. Biol. Chem. 283, 14100–14108 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Demirci, G. & Li, X.C. IL-2 and IL-15 exhibit opposing effects on Fas mediated apoptosis. Cell Mol. Immunol. 1, 123–128 (2004).

    CAS  PubMed  Google Scholar 

  33. Krieg, C., Letourneau, S., Pantaleo, G. & Boyman, O. Improved IL-2 immunotherapy by selective stimulation of IL-2 receptors on lymphocytes and endothelial cells. Proc. Natl. Acad. Sci. USA 107, 11906–11911 (2010).

    CAS  PubMed  Google Scholar 

  34. Ahmadzadeh, M. & Rosenberg, S.A. IL-2 administration increases CD4+ CD25(hi) Foxp3+ regulatory T cells in cancer patients. Blood 107, 2409–2414 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Bessard, A., Sole, V., Bouchaud, G., Quemener, A. & Jacques, Y. High antitumor activity of RLI, an interleukin-15 (IL-15)-IL-15 receptor alpha fusion protein, in metastatic melanoma and colorectal cancer. Mol. Cancer Ther. 8, 2736–2745 (2009).

    CAS  PubMed  Google Scholar 

  36. Minor, W., Cymborowski, M., Otwinowski, Z. & Chruszcz, M. HKL-3000: the integration of data reduction and structure solution–from diffraction images to an initial model in minutes. Acta Crystallogr. D Biol. Crystallogr. 62, 859–866 (2006).

    PubMed  Google Scholar 

  37. Adams, P.D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954 (2002).

    PubMed  Google Scholar 

  38. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    PubMed  Google Scholar 

  39. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

    CAS  PubMed  Google Scholar 

  40. Hess, B., Kutzner, C., van der Spoel, D. & Lindahl, E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435–447 (2008).

    CAS  PubMed  Google Scholar 

  41. Duan, Y. et al. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J. Comput. Chem. 24, 1999–2012 (2003).

    CAS  PubMed  Google Scholar 

  42. Hess, B. P-LINCS: A parallel linear constraint solver for molecular simulation. J. Chem. Theory Comput. 4, 116–122 (2008).

    CAS  PubMed  Google Scholar 

  43. Darden, T., York, D. & Pedersen, L. A smooth particle mesh Ewald potential. J. Chem. Phys. 103, 3014–3021 (1995).

    Google Scholar 

  44. Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007).

    PubMed  Google Scholar 

  45. Berendsen, H.J.C., Postma, P.M., van Gunsteren, W.F., DiNola, A. & Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984).

    CAS  Google Scholar 

  46. Bowman, G.R., Beauchamp, K.A., Boxer, G. & Pande, V.S. Progress and challenges in the automated construction of Markov state models for full protein systems. J. Chem. Phys. 131, 124101 (2009).

    PubMed  PubMed Central  Google Scholar 

  47. Bowman, G.R., Huang, X. & Pande, V.S. Network models for molecular kinetics and their initial applications to human health. Cell Res. 20, 622–630 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Noe, F. & Fischer, S. Transition networks for modeling the kinetics of conformational change in macromolecules. Curr. Opin. Struct. Biol. 18, 154–162 (2008).

    CAS  PubMed  Google Scholar 

  49. Krutzik, P.O. & Nolan, G.P. Fluorescent cell barcoding in flow cytometry allows high-throughput drug screening and signaling profiling. Nat. Methods 3, 361–368 (2006).

    CAS  PubMed  Google Scholar 

  50. Tang, F. et al. RNA-Seq analysis to capture the transcriptome landscape of a single cell. Nat. Protoc. 5, 516–535 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. Long, M. Rubinstein and members of the Leonard and Garcia laboratories for advice and discussions; and N. Goriatcheva, D. Waghray and S. Fischer for technical assistance. Supported by the US National Institutes of Health (R01 AI51321 to K.C.G.; R01 GM062868 to V.S.P.; and National Research Service Award NIH-F30DK094541 to A.M.R.), the American Recovery and Reinvestment Act of 2009 (Public Law 111-5; MRI-R2 to V.S.P.), the Division of Intramural Research of the National Heart, Lung and Blood Institute (US National Institutes of Health; W.J.L., J.-X.L., P.L., S.M. and R.S.), the Stanford Medical Scientist Training Program (NIH-GM07365 to A.M.R.) and the Howard Hughes Medical Institute (K.C.G.).

Author information

Authors and Affiliations

Authors

Contributions

A.M.R., D.F. and E.Ö. did crystallographic studies of the IL-15 quaternary complex; A.M.R. and E.Ö. determined and refined that structure; M.R. did SPR measurements; G.R.B. and V.S.P. did and analyzed molecular dynamics simulations; A.M.R. prepared cytokine proteins for signaling and transcriptional studies; A.M.R., S.M., I.M. and R.S. did signaling experiments by flow cytometry with phosphorylation-specific antibodies; A.M.R. did receptor-internalization studies; J.-X.L. and P.L. did and analyzed RNA sequencing transcriptional assays; J.-X.L. confirmed the quantitative PCR; A.M.R., J.-X.L., G.R.B., W.J.L. and K.C.G. designed the experiments; A.M.R., J.-X.L., P.L., S.M. and G.R.B. prepared the figures; A.M.R., W.J.L. and K.C.G. wrote the paper; and W.J.L. and K.C.G. supervised the research.

Corresponding author

Correspondence to K Christopher Garcia.

Ethics declarations

Competing interests

K.C.G. has filed a patent (US 2011/066911) describing the IL-2 'superkine' H9.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 and Tables 1–2 (PDF 1343 kb)

Supplementary Spreadsheet 1

Genes more potently regulated by IL-2. (XLS 188 kb)

Supplementary Spreadsheet 2

Genes more potently regulated by IL-15. (XLS 203 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ring, A., Lin, JX., Feng, D. et al. Mechanistic and structural insight into the functional dichotomy between IL-2 and IL-15. Nat Immunol 13, 1187–1195 (2012). https://doi.org/10.1038/ni.2449

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2449

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing