Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Trex1 regulates lysosomal biogenesis and interferon-independent activation of antiviral genes

Abstract

The sensing of viral nucleic acids by the innate immune system triggers the production of type I interferons, which activates interferon-stimulated genes (ISGs) and directs a multifaceted antiviral response. ISGs can also be activated through interferon-independent pathways, although the precise mechanisms remain elusive. Here we found that the cytosolic exonuclease Trex1 regulated the activation of a subset of ISGs independently of interferon. Both Trex1−/− mouse cells and Trex1-mutant human cells had high expression of genes encoding antiviral molecules ('antiviral genes') and were refractory to viral infection. The interferon-independent activation of antiviral genes in Trex1−/− cells required the adaptor STING, the kinase TBK1 and the transcription factors IRF3 and IRF7. We also found that Trex1-deficient cells had an expanded lysosomal compartment, altered subcellular localization of the transcription factor TFEB and diminished activity of the regulator mTORC1. Together our data identify Trex1 as a regulator of lysosomal biogenesis and interferon-independent activation of antiviral genes and show that dysregulation of lysosomes can elicit innate immune responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Impaired VSV replication in Trex1-deficient cells.
Figure 2: Trex1-deficient cells have broad antiviral resistance.
Figure 3: Interferon-independent activation of a subset of ISGs in Trex1-deficient cells.
Figure 4: Selective activation of ISGs in TREX1 mutant fibroblasts.
Figure 5: Interferon-independent activation of ISGs in Trex1 deficient cells requires STING, TBK1, IRF3 and IRF7.
Figure 6: Trex1 negatively regulates lysosomal biogenesis.
Figure 7: Trex1 regulates lysosomal biogenesis via TFEB and mTORC1.

Similar content being viewed by others

References

  1. Iwasaki, A. & Medzhitov, R. Regulation of adaptive immunity by the innate immune system. Science 327, 291–295 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Barber, G.N. Cytoplasmic DNA innate immune pathways. Immunol. Rev. 243, 99–108 (2011).

    CAS  PubMed  Google Scholar 

  3. Bowie, A.G. & Unterholzner, L. Viral evasion and subversion of pattern-recognition receptor signalling. Nat. Rev. Immunol. 8, 911–922 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Takaoka, A. et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448, 501–505 (2007).

    CAS  PubMed  Google Scholar 

  5. Unterholzner, L. et al. IFI16 is an innate immune sensor for intracellular DNA. Nat. Immunol. 11, 997–1004 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang, Z. et al. The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat. Immunol. 12, 959–965 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Burdette, D.L. et al. STING is a direct innate immune sensor of cyclic di-GMP. Nature 478, 515–518 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen, H. et al. Activation of STAT6 by STING is critical for antiviral innate immunity. Cell 147, 436–446 (2011).

    CAS  PubMed  Google Scholar 

  9. Noyce, R.S., Collins, S.E. & Mossman, K.L. Identification of a novel pathway essential for the immediate-early, interferon-independent antiviral response to enveloped virions. J. Virol. 80, 226–235 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Dixit, E. et al. Peroxisomes are signaling platforms for antiviral innate immunity. Cell 141, 668–681 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Yan, N., Regalado-Magdos, A.D., Stiggelbout, B., Lee-Kirsch, M.A. & Lieberman, J. The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1. Nat. Immunol. 11, 1005–1013 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Gall, A. et al. Autoimmunity initiates in nonhematopoietic cells and progresses via lymphocytes in an interferon-dependent autoimmune disease. Immunity 36, 120–131 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Crow, Y. et al. Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 cause Aicardi-Goutieres syndrome at the AGS1 locus. Nat. Genet. 38, 917–920 (2006).

    CAS  PubMed  Google Scholar 

  14. Crow, Y.J. & Rehwinkel, J. Aicardi-Goutieres syndrome and related phenotypes: linking nucleic acid metabolism with autoimmunity. Hum. Mol. Genet. 18, R130–R136 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee-Kirsch, M.A. et al. Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nat. Genet. 39, 1065–1067 (2007).

    CAS  PubMed  Google Scholar 

  16. Lee-Kirsch, M.A. et al. A mutation in TREX1 that impairs susceptibility to granzyme A-mediated cell death underlies familial chilblain lupus. J. Mol. Med. 85, 531–537 (2007).

    CAS  PubMed  Google Scholar 

  17. Richards, A. et al. C-terminal truncations in human 3′-5′ DNA exonuclease TREX1 cause autosomal dominant retinal vasculopathy with cerebral leukodystrophy. Nat. Genet. 39, 1068–1070 (2007).

    CAS  PubMed  Google Scholar 

  18. Moser, K.L., Kelly, J.A., Lessard, C.J. & Harley, J.B. Recent insights into the genetic basis of systemic lupus erythematosus. Genes Immun. 10, 373–379 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Stetson, D.B., Ko, J.S., Heidmann, T. & Medzhitov, R. Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134, 587–598 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang, Y., Lindahl, T. & Barnes, D. Trex1 exonuclease degrades ssDNA to prevent chronic checkpoint activation and autoimmune disease. Cell 131, 873–886 (2007).

    CAS  PubMed  Google Scholar 

  21. Das, S.C., Nayak, D., Zhou, Y. & Pattnaik, A.K. Visualization of intracellular transport of vesicular stomatitis virus nucleocapsids in living cells. J. Virol. 80, 6368–6377 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Orebaugh, C.D., Fye, J.M., Harvey, S., Hollis, T. & Perrino, F.W. The TREX1 exonuclease R114H mutation in Aicardi-Goutieres syndrome and lupus reveals dimeric structure requirements for DNA degradation activity. J. Biol. Chem. 286, 40246–40254 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kreijtz, J.H.C.M., Fouchier, R.A.M. & Rimmelzwaan, G.F. Immune responses to influenza virus infection. Virus Res. 162, 19–30 (2011).

    CAS  PubMed  Google Scholar 

  24. Pichlmair, A. et al. IFIT1 is an antiviral protein that recognizes 5′-triphosphate RNA. Nat. Immunol. 12, 624–630 (2011).

    CAS  PubMed  Google Scholar 

  25. Yan, N. & Chen, Z.J. Intrinsic antiviral immunity. Nat. Immunol. 13, 214–222 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Brass, A.L. et al. The IFITM proteins mediate cellular resistance to influenza A H1N1 virus, West Nile virus, and dengue virus. Cell 139, 1243–1254 (2009).

    PubMed  PubMed Central  Google Scholar 

  27. Ramantani, G. et al. Expanding the phenotypic spectrum of lupus erythematosus in aicardi-goutières syndrome. Arthritis Rheum. 62, 1469–1477 (2010).

    CAS  PubMed  Google Scholar 

  28. Paladino, P., Cummings, D.T., Noyce, R.S. & Mossman, K.L. The IFN-independent response to virus particle entry provides a first line of antiviral defense that is independent of TLRs and retinoic acid-inducible gene I. J. Immunol. 177, 8008–8016 (2006).

    CAS  PubMed  Google Scholar 

  29. Saftig, P. & Klumperman, J. Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat. Rev. Mol. Cell Biol. 10, 623–635 (2009).

    CAS  PubMed  Google Scholar 

  30. Cox, T.M. & Cachón-González, M.B. The cellular pathology of lysosomal diseases. J. Pathol. 226, 241–254 (2012).

    CAS  PubMed  Google Scholar 

  31. Palmieri, M. et al. Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum. Mol. Genet. 20, 3852–3866 (2011).

    CAS  PubMed  Google Scholar 

  32. Sardiello, M. et al. A gene network regulating lysosomal biogenesis and function. Science 325, 473–477 (2009).

    CAS  PubMed  Google Scholar 

  33. Settembre, C. et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 31, 1095–1108 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Peña-Llopis, S. et al. Regulation of TFEB and V-ATPases by mTORC1. EMBO J. 30, 3242–3258 (2011).

    PubMed  PubMed Central  Google Scholar 

  35. Roczniak-Ferguson, A. et al. The transcription factor TFEB links mTORC1 Signaling to transcriptional control of lysosome homeostasis. Sci. Signal. 5, ra42 (2012).

    PubMed  PubMed Central  Google Scholar 

  36. Vincent, M.J. et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol. J. 2, 69 (2005).

    PubMed  PubMed Central  Google Scholar 

  37. Ooi, E.E., Chew, J.S., Loh, J.P. & Chua, R.C. In vitro inhibition of human influenza A virus replication by chloroquine. Virol. J. 3, 39 (2006).

    PubMed  PubMed Central  Google Scholar 

  38. Savarino, A., Boelaert, J.R., Cassone, A., Majori, G. & Cauda, R. Effects of chloroquine on viral infections: an old drug against today's diseases? Lancet Infect. Dis. 3, 722–727 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Martina, J.A., Chen, Y., Gucek, M. & Puertollano, R. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 8, 903–914 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Mata, M.A. et al. Chemical inhibition of RNA viruses reveals REDD1 as a host defense factor. Nat. Chem. Biol. 7, 712–719 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Grandvaux, N. et al. Transcriptional profiling of interferon regulatory factor 3 target genes: direct involvement in the regulation of interferon-stimulated genes. J. Virol. 76, 5532–5539 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Medina, D.L. et al. Transcriptional activation of lysosomal exocytosis promotes cellular clearance. Dev. Cell 21, 421–430 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Migliorini, A. & Anders, H.-J. A novel pathogenetic concept-antiviral immunity in lupus nephritis. Nat. Rev. Nephrol. 8, 183–189 (2012).

    CAS  PubMed  Google Scholar 

  44. Holm, C.K. et al. Virus-cell fusion as a trigger of innate immunity dependent on the adaptor STING. Nat. Immunol. 13, 737–743 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Marshak-Rothstein, A. Toll-like receptors in systemic autoimmune disease. Nat. Rev. Immunol. 6, 823–835 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Chiu, Y.-H., Macmillan, J.B. & Chen, Z.J. RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 138, 576–591 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Keller, B.C. et al. Resistance to α/β interferon is a determinant of West Nile virus replication fitness and virulence. J. Virol. 80, 9424–9434 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank D. Stetson (University of Washington) for wild-type, Trex1−/− and Trex1−/−Irf3−/− primary MEFs and Trex1+/− mice, under agreement with D. Barnes and T. Lindahl (Cancer Research UK); R. Orchard and N. Alto for assistance with live cell confocal microscopy; R. Sumpter for assistance with fluorescence microscopy; Z.J. Chen (UT Southwestern Medical Center) for Sendai virus, Ifnar1−/− MEFs and discussions; M. Gale (University of Washington) for West Nile virus; B. Fontoura (UT Southwestern Medical Center) for influenza virus; Z. Zou for technical assistance; M. Whitt (University of Tennessee Health Science Center) for antibody to VSV; the Electron Microscopy Laboratory at Children's Medical Center for electron microscopy; J. Lieberman for critical reading of the manuscript; and members of the Yan laboratory for discussions. Supported by UT Southwestern Medical Center (N.Y.), the US National Institutes of Health (AI093795 and AI098569 to N.Y.; CA129387 to J.B.; and AI057156 to B.L.), The Alliance for Lupus Research (N.Y.) and Deutsche Forschungsgemeinschaft (LE 1074/4-1 to M.A.L.-K.).

Author information

Authors and Affiliations

Authors

Contributions

M.H. and N.Y. designed and did most of the experiments; J.K. helped with the experiments; M.A.L.-K. provided human cells and advice; D.R. did electron microscopy; A.K.P., J.B. and B.L. contributed reagents and advice; E.K.W. and I.D. helped analyze the data; and M.H. and N.Y. wrote the paper.

Corresponding author

Correspondence to Nan Yan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–14 and Tables 1–2 (PDF 2001 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasan, M., Koch, J., Rakheja, D. et al. Trex1 regulates lysosomal biogenesis and interferon-independent activation of antiviral genes. Nat Immunol 14, 61–71 (2013). https://doi.org/10.1038/ni.2475

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2475

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing