Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

The transcriptional landscape of αβ T cell differentiation

Subjects

This article has been updated

Abstract

The differentiation of αβT cells from thymic precursors is a complex process essential for adaptive immunity. Here we exploited the breadth of expression data sets from the Immunological Genome Project to analyze how the differentiation of thymic precursors gives rise to mature T cell transcriptomes. We found that early T cell commitment was driven by unexpectedly gradual changes. In contrast, transit through the CD4+CD8+ stage involved a global shutdown of housekeeping genes that is rare among cells of the immune system and correlated tightly with expression of the transcription factor c-Myc. Selection driven by major histocompatibility complex (MHC) molecules promoted a large-scale transcriptional reactivation. We identified distinct signatures that marked cells destined for positive selection versus apoptotic deletion. Differences in the expression of unexpectedly few genes accompanied commitment to the CD4+ or CD8+ lineage, a similarity that carried through to peripheral T cells and their activation, demonstrated by mass cytometry phosphoproteomics. The transcripts newly identified as encoding candidate mediators of key transitions help define the 'known unknowns' of thymocyte differentiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: 'Birds-eye' view of transcriptome changes during the course of T cell differentiation.
Figure 2: Dynamics of gene expression during early T cell differentiation.
Figure 3: Transcriptional footprint of β-selection.
Figure 4: Transcriptional shutdown in small DP thymocytes.
Figure 5: Reactivation of housekeeping activities after positive selection.
Figure 6: Transcriptional and functional 'footprints' of clonal deletion in CD69+ DP thymocytes.
Figure 7: Acquisition of CD4+ and CD8+ transcriptional identities during thymocyte differentiation.
Figure 8: Definition of CD4+ and CD8+ transcriptional identities.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Change history

  • 13 May 2013

    In the version of this article initially published online, the eighth and ninth author names were incorrect. Those should be Matthew H. Spitzer and Garry P. Nolan. The error has been corrected for the print, PDF and HTML versions of this article.

References

  1. Miller, J.F. The golden anniversary of the thymus. Nat. Rev. Immunol. 11, 489–495 (2011).

    CAS  PubMed  Google Scholar 

  2. von Boehmer, H., Teh, H.S. & Kisielow, P. The thymus selects the useful, neglects the useless and destroys the harmful. Immunol. Today 10, 57–61 (1989).

    CAS  PubMed  Google Scholar 

  3. Jameson, S.C., Hogquist, K.A. & Bevan, M.J. Positive selection of thymocytes. Annu. Rev. Immunol. 13, 93–126 (1995).

    CAS  PubMed  Google Scholar 

  4. Robey, E. Regulation of T cell fate by Notch. Annu. Rev. Immunol. 17, 283–295 (1999).

    CAS  PubMed  Google Scholar 

  5. Hogquist, K.A., Baldwin, T.A. & Jameson, S.C. Central tolerance: learning self-control in the thymus. Nat. Rev. Immunol. 5, 772–782 (2005).

    CAS  PubMed  Google Scholar 

  6. Stritesky, G.L., Jameson, S.C. & Hogquist, K.A. Selection of self-reactive T cells in the thymus. Annu. Rev. Immunol. 30, 95–114 (2012).

    CAS  PubMed  Google Scholar 

  7. Singer, A., Adoro, S. & Park, J.H. Lineage fate and intense debate: myths, models and mechanisms of CD4- versus CD8-lineage choice. Nat. Rev. Immunol. 8, 788–801 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Thompson, P.K. & Zuniga-Pflucker, J.C. On becoming a T cell, a convergence of factors kick it up a Notch along the way. Semin. Immunol. 23, 350–359 (2011).

    CAS  PubMed  Google Scholar 

  9. Rothenberg, E.V. T cell lineage commitment: identity and renunciation. J. Immunol. 186, 6649–6655 (2011).

    CAS  PubMed  Google Scholar 

  10. Godfrey, D.I., Kennedy, J., Suda, T. & Zlotnik, A. A developmental pathway involving four phenotypically and functionally distinct subsets of CD3CD4CD8 triple-negative adult mouse thymocytes defined by CD44 and CD25 expression. J. Immunol. 150, 4244–4252 (1993).

    CAS  PubMed  Google Scholar 

  11. Bhandoola, A., von, B.H., Petrie, H.T. & Zuniga-Pflucker, J.C. Commitment and developmental potential of extrathymic and intrathymic T cell precursors: plenty to choose from. Immunity 26, 678–689 (2007).

    CAS  PubMed  Google Scholar 

  12. Williams, J.A. et al. Regulated costimulation in the thymus is critical for T cell development: dysregulated CD28 costimulation can bypass the pre-TCR checkpoint. J. Immunol. 175, 4199–4207 (2005).

    CAS  PubMed  Google Scholar 

  13. Prinz, I. et al. Visualization of the earliest steps of γδ T cell development in the adult thymus. Nat. Immunol. 7, 995–1003 (2006).

    CAS  PubMed  Google Scholar 

  14. Kreslavsky, T. et al. β-Selection-induced proliferation is required for αβ T cell differentiation. Immunity 37, 840–853 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Zinkernagel, R.M., Callahan, G.N., Klein, J. & Dennert, G. Cytotoxic T cells learn specificity for self H-2 during diffentiation in the thymus. Nature 271, 251–253 (1978).

    CAS  PubMed  Google Scholar 

  16. MacDonald, H.R. et al. Positive selection of CD4+ thymocytes controlled by MHC class II gene products. Nature 336, 471–473 (1988).

    CAS  PubMed  Google Scholar 

  17. Kisielow, P., Teh, H.S., Bluthmann, H. & von Boehmer, H. Positive selection of antigen-specific T cells in thymus by restricting MHC molecules. Nature 335, 730–733 (1988).

    CAS  PubMed  Google Scholar 

  18. Bousso, P., Bhakta, N.R., Lewis, R.S. & Robey, E. Dynamics of thymocyte-stromal cell interactions visualized by two-photon microscopy. Science 296, 1876–1880 (2002).

    CAS  PubMed  Google Scholar 

  19. Egerton, M., Scollay, R. & Shortman, K. Kinetics of mature T-cell development in the thymus. Proc. Natl. Acad. Sci. USA 87, 2579–2582 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Teh, H.S. et al. Thymic major histocompatibility complex antigens and the αβ T-cell receptor determine the CD4/CD8 phenotype of T cells. Nature 335, 229–233 (1988).

    CAS  PubMed  Google Scholar 

  21. Jordan, M.S. et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat. Immunol. 2, 301–306 (2001).

    CAS  PubMed  Google Scholar 

  22. Leishman, A.J. et al. Precursors of functional MHC class I- or class II-restricted CD8αα+ T cells are positively selected in the thymus by agonist self-peptides. Immunity 16, 355–364 (2002).

    CAS  PubMed  Google Scholar 

  23. Fink, P.J. & Hendricks, D.W. Post-thymic maturation: young T cells assert their individuality. Nat. Rev. Immunol. 11, 544–549 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. DeRyckere, D., Mann, D.L. & DeGregori, J. Characterization of transcriptional regulation during negative selection in vivo. J. Immunol. 171, 802–811 (2003).

    CAS  PubMed  Google Scholar 

  25. Schmitz, I., Clayton, L.K. & Reinherz, E.L. Gene expression analysis of thymocyte selection in vivo. Int. Immunol. 15, 1237–1248 (2003).

    CAS  PubMed  Google Scholar 

  26. Liston, A. et al. Generalized resistance to thymic deletion in the NOD mouse; a polygenic trait characterized by defective induction of Bim. Immunity 21, 817–830 (2004).

    CAS  PubMed  Google Scholar 

  27. Mick, V.E. et al. The regulated expression of a diverse set of genes during thymocyte positive selection in vivo. J. Immunol. 173, 5434–5444 (2004).

    CAS  PubMed  Google Scholar 

  28. Zucchelli, S. et al. Defective central tolerance induction in NOD mice: genomics and genetics. Immunity 22, 385–396 (2005).

    CAS  PubMed  Google Scholar 

  29. Baldwin, T.A. & Hogquist, K.A. Transcriptional analysis of clonal deletion in vivo. J. Immunol. 179, 837–844 (2007).

    CAS  PubMed  Google Scholar 

  30. Mingueneau, M. et al. Thymic negative selection is functional in NOD mice. J. Exp. Med. 209, 623–637 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang, J.A. et al. Dynamic transformations of genome-wide epigenetic marking and transcriptional control establish T cell identity. Cell 149, 467–482 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Li, L., Leid, M. & Rothenberg, E.V. An early T cell lineage commitment checkpoint dependent on the transcription factor Bcl11b. Science 329, 89–93 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Luc, S. et al. The earliest thymic T cell progenitors sustain B cell and myeloid lineage potential. Nat. Immunol. 13, 412–419 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Bendall, S.C. et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 687–696 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Narayan, K. et al. Intrathymic programming of effector fates in three molecularly distinct γδ T cell subtypes. Nat. Immunol. 13, 511–518 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ikawa, T. et al. An essential developmental checkpoint for production of the T cell lineage. Science 329, 93–96 (2010).

    CAS  PubMed  Google Scholar 

  37. Li, P. et al. Reprogramming of T cells to natural killer-like cells upon Bcl11b deletion. Science 329, 85–89 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Rothenberg, E.V., Zhang, J. & Li, L. Multilayered specification of the T-cell lineage fate. Immunol. Rev. 238, 150–168 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Rakhilin, S.V. et al. A network of control mediated by regulator of calcium/calmodulin-dependent signaling. Science 306, 698–701 (2004).

    CAS  PubMed  Google Scholar 

  40. Kisielow, J., Nairn, A.C. & Karjalainen, K. TARPP, a novel protein that accompanies TCR gene rearrangement and thymocyte education. Eur. J. Immunol. 31, 1141–1149 (2001).

    CAS  PubMed  Google Scholar 

  41. Olenchock, B.A. et al. Disruption of diacylglycerol metabolism impairs the induction of T cell anergy. Nat. Immunol. 7, 1174–1181 (2006).

    CAS  PubMed  Google Scholar 

  42. Guo, R. et al. Synergistic control of T cell development and tumor suppression by diacylglycerol kinase α and ζ. Proc. Natl. Acad. Sci. USA 105, 11909–11914 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Deftos, M.L. et al. Notch1 signaling promotes the maturation of CD4 and CD8 SP thymocytes. Immunity 13, 73–84 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Reizis, B. & Leder, P. Direct induction of T lymphocyte-specific gene expression by the mammalian Notch signaling pathway. Genes Dev. 16, 295–300 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. González-Garcia, S. et al. CSL-MAML-dependent Notch1 signaling controls T lineage-specific IL-7Rα gene expression in early human thymopoiesis and leukemia. J. Exp. Med. 206, 779–791 (2009).

    PubMed  PubMed Central  Google Scholar 

  46. Yashiro-Ohtani, Y. et al. Pre-TCR signaling inactivates Notch1 transcription by antagonizing E2A. Genes Dev. 23, 1665–1676 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Taghon, T. et al. Developmental and molecular characterization of emerging β- and γδ-selected pre-T cells in the adult mouse thymus. Immunity 24, 53–64 (2006).

    CAS  PubMed  Google Scholar 

  48. Germar, K. et al. T-cell factor 1 is a gatekeeper for T-cell specification in response to Notch signaling. Proc. Natl. Acad. Sci. USA 108, 20060–20065 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Weber, B.N. et al. A critical role for TCF-1 in T-lineage specification and differentiation. Nature 476, 63–68 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Weng, A.P. et al. c-Myc is an important direct target of Notch1 in T-cell acute lymphoblastic leukemia/lymphoma. Genes Dev. 20, 2096–2109 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. von Boehmer, H. Selection of the T-cell repertoire: receptor-controlled checkpoints in T-cell development. Adv. Immunol. 84, 201–238 (2004).

    CAS  PubMed  Google Scholar 

  52. Wong, G.W. et al. HES1 opposes a PTEN-dependent check on survival, differentiation, and proliferation of TCRβ-selected mouse thymocytes. Blood 120, 1439–1448 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Dose, M. et al. c-Myc mediates pre-TCR-induced proliferation but not developmental progression. Blood 108, 2669–2677 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Choi, S.H., Wright, J.B., Gerber, S.A. & Cole, M.D. Myc protein is stabilized by suppression of a novel E3 ligase complex in cancer cells. Genes Dev. 24, 1236–1241 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Adhikary, S. & Eilers, M. Transcriptional regulation and transformation by Myc proteins. Nat. Rev. Mol. Cell Biol. 6, 635–645 (2005).

    CAS  PubMed  Google Scholar 

  56. Schreiber-Agus, N. & DePinho, R.A. Repression by the Mad(Mxi1)-Sin3 complex. Bioessays 20, 808–818 (1998).

    CAS  PubMed  Google Scholar 

  57. Ciofani, M. et al. Obligatory role for cooperative signaling by pre-TCR and Notch during thymocyte differentiation. J. Immunol. 172, 5230–5239 (2004).

    CAS  PubMed  Google Scholar 

  58. Maillard, I. et al. The requirement for Notch signaling at the β-selection checkpoint in vivo is absolute and independent of the pre-T cell receptor. J. Exp. Med. 203, 2239–2245 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Iritani, B.M. et al. Modulation of T-lymphocyte development, growth and cell size by the Myc antagonist and transcriptional repressor Mad1. EMBO J. 21, 4820–4830 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Geering, B. & Simon, H.U. Peculiarities of cell death mechanisms in neutrophils. Cell Death Differ. 18, 1457–1469 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Nie, Z. et al. c-Myc is a universal amplifier of expressed genes in lymphocytes and embryonic stem cells. Cell 151, 68–79 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Lovén, J. et al. Revisiting global gene expression analysis. Cell 151, 476–482 (2012).

    PubMed  PubMed Central  Google Scholar 

  63. Neilson, J.R., Zheng, G.X., Burge, C.B. & Sharp, P.A. Dynamic regulation of miRNA expression in ordered stages of cellular development. Genes Dev. 21, 578–589 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Starr, T.K., Jameson, S.C. & Hogquist, K.A. Positive and negative selection of T cells. Annu. Rev. Immunol. 21, 139–176 (2003).

    CAS  PubMed  Google Scholar 

  65. Swat, W., Dessing, M., von, B.H. & Kisielow, P. CD69 expression during selection and maturation of CD4+8+ thymocytes. Eur. J. Immunol. 23, 739–746 (1993).

    CAS  PubMed  Google Scholar 

  66. Jones, M.E. & Zhuang, Y. Acquisition of a functional T cell receptor during T lymphocyte development is enforced by HEB and E2A transcription factors. Immunity 27, 860–870 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Rivera, R.R. et al. Thymocyte selection is regulated by the helix-loop-helix inhibitor protein, Id3. Immunity 12, 17–26 (2000).

    CAS  PubMed  Google Scholar 

  68. Bain, G. et al. Regulation of the helix-loop-helix proteins, E2A and Id3, by the Ras-ERK MAPK cascade. Nat. Immunol. 2, 165–171 (2001).

    CAS  PubMed  Google Scholar 

  69. Meissner, T.B. et al. NLR family member NLRC5 is a transcriptional regulator of MHC class I genes. Proc. Natl. Acad. Sci. USA 107, 13794–13799 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Huang, B., Wu, P., Popov, K.M. & Harris, R.A. Starvation and diabetes reduce the amount of pyruvate dehydrogenase phosphatase in rat heart and kidney. Diabetes 52, 1371–1376 (2003).

    CAS  PubMed  Google Scholar 

  71. Maliekal, P. et al. Molecular identification of mammalian phosphopentomutase and glucose-1,6-bisphosphate synthase, two members of the α-D-phosphohexomutase family. J. Biol. Chem. 282, 31844–31851 (2007).

    CAS  PubMed  Google Scholar 

  72. van Meerwijk, J.P. et al. Quantitative impact of thymic clonal deletion on the T cell repertoire. J. Exp. Med. 185, 377–383 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Surh, C.D. & Sprent, J. T-cell apoptosis detected in situ during positive and negative selection in the thymus. Nature 372, 100–103 (1994).

    CAS  PubMed  Google Scholar 

  74. Viret, C. et al. A role for accessibility to self-peptide-self-MHC complexes in intrathymic negative selection. J. Immunol. 166, 4429–4437 (2001).

    CAS  PubMed  Google Scholar 

  75. McCaughtry, T.M., Baldwin, T.A., Wilken, M.S. & Hogquist, K.A. Clonal deletion of thymocytes can occur in the cortex with no involvement of the medulla. J. Exp. Med. 205, 2575–2584 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Baldwin, K.K., Trenchak, B.P., Altman, J.D. & Davis, M.M. Negative selection of T cells occurs throughout thymic development. J. Immunol. 163, 689–698 (1999).

    CAS  PubMed  Google Scholar 

  77. Krueger, A. & von Boehmer, H. Identification of a T lineage-committed progenitor in adult blood. Immunity 26, 105–116 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Liston, A. et al. Impairment of organ-specific T cell negative selection by diabetes susceptibility genes: genomic analysis by mRNA profiling. Genome Biol. 8, R12 (2007).

    PubMed  PubMed Central  Google Scholar 

  79. Chan, C.J., Andrews, D.M. & Smyth, M.J. Receptors that interact with nectin and nectin-like proteins in the immunosurveillance and immunotherapy of cancer. Curr. Opin. Immunol. 24, 246–251 (2012).

    CAS  PubMed  Google Scholar 

  80. Wang, L. & Bosselut, R. CD4–CD8 lineage differentiation: Thpok-ing into the nucleus. J. Immunol. 183, 2903–2910 (2009).

    CAS  PubMed  Google Scholar 

  81. Pénit, C. & Vasseur, F. Expansion of mature thymocyte subsets before emigration to the periphery. J. Immunol. 159, 4848–4856 (1997).

    PubMed  Google Scholar 

  82. Lei, Y. & Takahama, Y. XCL1 and XCR1 in the immune system. Microbes Infect. 14, 262–267 (2012).

    CAS  PubMed  Google Scholar 

  83. Rudolph, B., Hueber, A.O. & Evan, G.I. Reversible activation of c-Myc in thymocytes enhances positive selection and induces proliferation and apoptosis in vitro. Oncogene 19, 1891–1900 (2000).

    CAS  PubMed  Google Scholar 

  84. Yu, S. et al. The TCF-1 and LEF-1 transcription factors have cooperative and opposing roles in T cell development and malignancy. Immunity 37, 813–826 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Tullai, J.W. et al. Immediate-early and delayed primary response genes are distinct in function and genomic architecture. J. Biol. Chem. 282, 23981–23995 (2007).

    CAS  PubMed  Google Scholar 

  86. Bouillet, P. et al. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 286, 1735–1738 (1999).

    CAS  PubMed  Google Scholar 

  87. Bendall, S.C. et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 687–696 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Huang, W., Sherman, B.T. & Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    CAS  Google Scholar 

  89. Huang, W., Sherman, B.T. & Lempicki, R.A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009).

    Google Scholar 

  90. Eden, E., Lipson, D., Yogev, S. & Yakhini, Z. Discovering motifs in ranked lists of DNA sequences. PLOS Comput. Biol. 3, e39 (2007).

    PubMed  PubMed Central  Google Scholar 

  91. Eden, E. et al. GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10, 48 (2009).

    PubMed  PubMed Central  Google Scholar 

  92. Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Kanehisa, M. et al. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40, D109–D114 (2012).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank K. Hattori, A. Ortiz-Lopez and N. Asinovski for technical assistance with mice and antibodies; J. Moore and A. Kressler for flow cytometry; and C. Laplace for assistance with figure preparation. Supported by the US National Institutes of Health (AI072073), the Human Frontier Science Program (HFSP-LT000096 to M.M.), the National Health and Medical Research Council (637353 to D.G.) and the Australian Research Council (LP110201169 to, T.H.).

Author information

Authors and Affiliations

Authors

Consortia

Contributions

M.M., T.K., D.G. and T.H. designed, did and analyzed some of the experiments and wrote the manuscript; R.C. and J.E. helped with microarray data analysis; S.B. and M.H.S. designed, did and analyzed some of the experiments; G.P.N. and K.K. and H.v.B. contributed resources and assisted with data analysis; and D.M. and C.B. directed the study, analyzed and interpreted results and wrote the manuscript.

Corresponding authors

Correspondence to Diane Mathis or Christophe Benoist.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

A full list of members and affiliations appears at the end of the paper.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7 (PDF 1987 kb)

Supplementary Table 1

Supplementary Table 1 (XLSX 10 kb)

Supplementary Table 2

Supplementary Table 2 (XLSX 596 kb)

Supplementary Table 3

Supplementary Table 3 (XLSX 262 kb)

Supplementary Table 4

Supplementary Table 4 (XLSX 355 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mingueneau, M., Kreslavsky, T., Gray, D. et al. The transcriptional landscape of αβ T cell differentiation. Nat Immunol 14, 619–632 (2013). https://doi.org/10.1038/ni.2590

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2590

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing