Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

MicroRNAs: new regulators of immune cell development and function

Abstract

Decades of research went into understanding immune cell development and function without awareness that consideration of a key element, microRNA (miRNA), was lacking. The discovery of miRNAs as regulators of developmental events in model organisms suggested to many investigators that miRNA might be involved in the immune system. In the past few years, widespread examination of this possibility has produced notable results. Results have shown that miRNAs affect mammalian immune cell differentiation, the outcome of immune responses to infection and the development of diseases of immunological origin. Some miRNAs repress expression of target proteins with well established functions in hematopoiesis. Here we bring together much of this work, which has so far only scratched the surface of this very fertile field of investigation, and show how the results illuminate many historic questions about hematopoiesis and immune function.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Involvement of miRNAs in hematopoiesis and immune system function.

Similar content being viewed by others

References

  1. Baulcombe, D. RNA silencing in plants. Nature 431, 356–363 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    Article  CAS  PubMed  Google Scholar 

  3. Lee, R.C., Feinbaum, R.L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Cai, X., Hagedorn, C.H. & Cullen, B.R. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10, 1957–1966 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lee, Y. et al. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051–4060 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Han, J. et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125, 887–901 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Yi, R., Qin, Y., Macara, I.G. & Cullen, B.R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 17, 3011–3016 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chendrimada, T.P. et al. MicroRNA silencing through RISC recruitment of eIF6. Nature 447, 823–828 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Chendrimada, T.P. et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436, 740–744 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. O'Carroll, D. et al. A Slicer-independent role for Argonaute 2 in hematopoiesis and the microRNA pathway. Genes Dev. 21, 1999–2004 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cobb, B.S. et al. T cell lineage choice and differentiation in the absence of the RNase III enzyme Dicer. J. Exp. Med. 201, 1367–1373 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Muljo, S.A. et al. Aberrant T cell differentiation in the absence of Dicer. J. Exp. Med. 202, 261–269 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Koralov, S.B. et al. Dicer ablation affects antibody diversity and cell survival in the B lymphocyte lineage. Cell 132, 860–874 (2008). This paper describes an early B cell–specific ablation of Dicer expression that leads to a block in B cell development at the transition from pro–B cell to pre–B cell and identifies dysregulation of expression of the miR-17–92 cluster and its target gene Bim as the culprits of this defect.

    Article  CAS  PubMed  Google Scholar 

  14. Bartel, D.P. & Chen, C.Z. Micromanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat. Rev. Genet. 5, 396–400 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Landgraf, P. et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129, 1401–1414 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Georgantas, R.W., III et al. CD34+ hematopoietic stem-progenitor cell microRNA expression and function: a circuit diagram of differentiation control. Proc. Natl. Acad. Sci. USA 104, 2750–2755 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Garzon, R. et al. MicroRNA fingerprints during human megakaryocytopoiesis. Proc. Natl. Acad. Sci. USA 103, 5078–5083 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhan, M., Miller, C.P., Papayannopoulou, T., Stamatoyannopoulos, G. & Song, C.Z. MicroRNA expression dynamics during murine and human erythroid differentiation. Exp. Hematol. 35, 1015–1025 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cobb, B.S. et al. A role for Dicer in immune regulation. J. Exp. Med. 203, 2519–2527 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Neilson, J.R., Zheng, G.X., Burge, C.B. & Sharp, P.A. Dynamic regulation of miRNA expression in ordered stages of cellular development. Genes Dev. 21, 578–589 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. O'Connell, R.M., Taganov, K.D., Boldin, M.P., Cheng, G. & Baltimore, D. MicroRNA-155 is induced during the macrophage inflammatory response. Proc. Natl. Acad. Sci. USA 104, 1604–1609 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Taganov, K.D., Boldin, M.P., Chang, K.J. & Baltimore, D. NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl. Acad. Sci. USA 103, 12481–12486 (2006). This paper identifies three endotoxin-responsive miRNAs (miR-146, miR-155 and miR-132) in monocytic cells and proposes involvement of the miR-146 family in the negative regulation of Toll-like receptor signaling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wu, H. et al. miRNA Profiling of Naive, Effector and memory CD8 T Cells. PLoS ONE 2, e1020 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Calin, G.A. & Croce, C.M. MicroRNA signatures in human cancers. Nat. Rev. Cancer 6, 857–866 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Tam, W., Ben-Yehuda, D. & Hayward, W.S. BIC, a novel gene activated by proviral insertions in avian leukosis virus-induced lymphomas, is likely to function through its noncoding RNA. Mol. Cell. Biol. 17, 1490–1502 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Haasch, D. et al. T cell activation induces a noncoding RNA transcript sensitive to inhibition by immunosuppressant drugs and encoded by the proto-oncogene, BIC. Cell. Immunol. 217, 78–86 (2002).

    Article  CAS  PubMed  Google Scholar 

  27. Thai, T.H. et al. Regulation of the germinal center response by microRNA-155. Science 316, 604–608 (2007). This report describes analysis of the physiological functions of miR-155 in the immune system through the targeted deletion of this miRNA in mice.

    Article  CAS  PubMed  Google Scholar 

  28. Eis, P.S. et al. Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc. Natl. Acad. Sci. USA 102, 3627–3632 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fulci, V. et al. Quantitative technologies establish a novel microRNA profile of chronic lymphocytic leukemia. Blood 109, 4944–4951 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Kluiver, J. et al. BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J. Pathol. 207, 243–249 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. O'Connell, R.M. et al. Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J. Exp. Med. 205, 585–594 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tam, W. & Dahlberg, J.E. miR-155/BIC as an oncogenic microRNA. Genes Chromosom. Cancer 45, 211–212 (2006).

    Article  CAS  PubMed  Google Scholar 

  33. van den Berg, A. et al. High expression of B-cell receptor inducible gene BIC in all subtypes of Hodgkin lymphoma. Genes Chromosom. Cancer 37, 20–28 (2003).

    Article  CAS  PubMed  Google Scholar 

  34. Costinean, S. et al. Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc. Natl. Acad. Sci. USA 103, 7024–7029 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rodriguez, A. et al. Requirement of bic/microRNA-155 for normal immune function. Science 316, 608–611 (2007). This paper analyzes the physiological functions of miR-155 in the immune system through the targeted deletion of this miRNA in mice.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vigorito, E. et al. microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. Immunity 27, 847–859 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dorsett, Y. et al. MicroRNA-155 suppresses activation-induced cytidine deaminase-mediated Myc-Igh translocation. Immunity 28, 630–638 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Teng, G. et al. MicroRNA-155 is a negative regulator of activation-induced cytidine deaminase. Immunity 28, 621–629 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zheng, Y. et al. Genome-wide analysis of Foxp3 target genes in developing and mature regulatory T cells. Nature 445, 936–940 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Brown, B.D. et al. Endogenous microRNA can be broadly exploited to regulate transgene expression according to tissue, lineage and differentiation state. Nat. Biotechnol. 25, 1457–1467 (2007).

    Article  CAS  PubMed  Google Scholar 

  41. Kluiver, J. et al. Regulation of pri-microRNA BIC transcription and processing in Burkitt lymphoma. Oncogene 26, 3769–3776 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Yin, Q. et al. microRNA-155 is an Epstein-Barr Virus induced gene that modulates Epstein Barr virus regulated gene expression pathways. J. Virol. 82, 5295–5306 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Garzon, R. et al. Distinctive microRNA signature of acute myeloid leukemia bearing cytoplasmic mutated nucleophosmin. Proc. Natl. Acad. Sci. USA 105, 3945–3950 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gottwein, E. et al. A viral microRNA functions as an orthologue of cellular miR-155. Nature 450, 1096–1099 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Skalsky, R.L. et al. Kaposi's sarcoma-associated herpesvirus encodes an ortholog of miR-155. J. Virol. 81, 12836–12845 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jiang, J., Lee, E.J. & Schmittgen, T.D. Increased expression of microRNA-155 in Epstein-Barr virus transformed lymphoblastoid cell lines. Genes Chromosom. Cancer 45, 103–106 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Mrazek, J., Kreutmayer, S.B., Grasser, F.A., Polacek, N. & Huttenhofer, A. Subtractive hybridization identifies novel differentially expressed ncRNA species in EBV-infected human B cells. Nucleic Acids Res. 35, e73 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Cameron, J.E. et al. Epstein-Barr virus latent membrane protein 1 induces cellular MicroRNA miR-146a, a modulator of lymphocyte signaling pathways. J. Virol. 82, 1946–1958 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Motsch, N., Pfuhl, T., Mrazek, J., Barth, S. & Grasser, F.A. Epstein-Barr virus-encoded latent membrane protein 1 (LMP1) induces the expression of the cellular microRNA miR-146a. RNA Biol., 4, 131–137 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Monticelli, S. et al. MicroRNA profiling of the murine hematopoietic system. Genome Biol. 6, R71 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Griffiths-Jones, S. The microRNA registry. Nucleic Acids Res. 32, D109–D111 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Obernosterer, G., Leuschner, P.J., Alenius, M. & Martinez, J. Post-transcriptional regulation of microRNA expression. RNA 12, 1161–1167 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Thomson, J.M. et al. Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev. 20, 2202–2207 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lim, C.A. et al. Genome-wide mapping of RELA(p65) binding identifies E2F1 as a transcriptional activator recruited by NF-κB upon TLR4 activation. Mol. Cell 27, 622–635 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Chang, T.C. et al. Widespread microRNA repression by Myc contributes to tumorigenesis. Nat. Genet. 40, 43–50 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Kawai, T. & Akira, S. Signaling to NF-κB by Toll-like receptors. Trends Mol. Med. 13, 460–469 (2007).

    Article  CAS  PubMed  Google Scholar 

  57. Lin, S.L., Chiang, A., Chang, D. & Ying, S.Y. Loss of mir-146a function in hormone-refractory prostate cancer. RNA 14, 417–424 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Xiao, C. et al. MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 131, 146–159 (2007). This paper describes the function of miR-150 in the control of B cell development through a combination of gain- and loss-of-function approaches.

    Article  CAS  PubMed  Google Scholar 

  59. Lu, J. et al. microRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. Dev. Cell 14, 843–853 (2008). It is known that miR-150 promotes megakaryocytic differentiation at the expense of erythroid differentiation, thereby specifying lineage 'choice' at the megakaryocyte-erythroid progenitor stage of hematopoietic development. This work expands the hematopoietic function of miR-150, previously confined to lymphoid development, while also confirming previous findings of c-Myb as an important target of miR-150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhou, B., Wang, S., Mayr, C., Bartel, D.P. & Lodish, H.F. miR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely. Proc. Natl. Acad. Sci. USA 104, 7080–7085 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Montecino-Rodriguez, E. & Dorshkind, K. New perspectives in B-1 B cell development and function. Trends Immunol. 27, 428–433 (2006).

    Article  CAS  PubMed  Google Scholar 

  62. Emambokus, N. et al. Progression through key stages of haemopoiesis is dependent on distinct threshold levels of c-Myb. EMBO J. 22, 4478–4488 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Chen, C.Z., Li, L., Lodish, H.F. & Bartel, D.P. MicroRNAs modulate hematopoietic lineage differentiation. Science 303, 83–86 (2004). This early work demonstrates functions for miRNA in regulating lineage decisions during hematopoiesis, setting the paradigm in this field. It identifies miR-181, miR-142 and miR-223 as being important in hematopoietic development.

    Article  CAS  PubMed  Google Scholar 

  64. Li, Q.J. et al. miR-181a is an intrinsic modulator of T cell sensitivity and selection. Cell 129, 147–161 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Choong, M.L., Yang, H.H. & McNiece, I. MicroRNA expression profiling during human cord blood-derived CD34 cell erythropoiesis. Exp. Hematol. 35, 551–564 (2007).

    Article  CAS  PubMed  Google Scholar 

  66. Naguibneva, I. et al. The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation. Nat. Cell Biol. 8, 278–284 (2006).

    Article  CAS  PubMed  Google Scholar 

  67. Mendell, J.T. MicroRNAs: critical regulators of development, cellular physiology and malignancy. Cell Cycle 4, 1179–1184 (2005).

    Article  CAS  PubMed  Google Scholar 

  68. Ventura, A. et al. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 132, 875–886 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Xiao, C. et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17–92 expression in lymphocytes. Nat. Immunol. 9, 405–414 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Fontana, L. et al. MicroRNAs 17–5p-20a-106a control monocytopoiesis through AML1 targeting and M-CSF receptor upregulation. Nat. Cell Biol. 9, 775–787 (2007). Monocytopoiesis is dependent on downregulation of the miR-17–92 cluster, which allows expression of AML1 that in turn is a transcriptional repressor of this miRNA cluster. This paper demonstrates a mutually inhibitory miRNA–transcription factor circuit that regulates monocytic lineage differentiation.

    Article  CAS  PubMed  Google Scholar 

  71. Johnnidis, J.B. et al. Regulation of progenitor cell proliferation and granulocyte function by microRNA-223. Nature 451, 1125–1129 (2008). Mice lacking miR-223 have more hyperfunctional neutrophils and pathologic sequelae thereof, somewhat unexpectedly, given previous data showing that this miRNA promoted granulopoiesis. A new function for miRNA in linking granulocytic lineage development with functional activation is suggested by this study.

    Article  CAS  PubMed  Google Scholar 

  72. Masaki, S., Ohtsuka, R., Abe, Y., Muta, K. & Umemura, T. Expression patterns of microRNAs 155 and 451 during normal human erythropoiesis. Biochem. Biophys. Res. Commun. 364, 509–514 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Fazi, F. et al. Epigenetic silencing of the myelopoiesis regulator microRNA-223 by the AML1/ETO oncoprotein. Cancer Cell 12, 457–466 (2007).

    Article  CAS  PubMed  Google Scholar 

  74. Fazi, F. et al. A minicircuitry comprised of microRNA-223 and transcription factors NFI-A and C/EBPα regulates human granulopoiesis. Cell 123, 819–831 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Garzon, R. et al. MicroRNA gene expression during retinoic acid-induced differentiation of human acute promyelocytic leukemia. Oncogene 26, 4148–4157 (2007).

    Article  CAS  PubMed  Google Scholar 

  76. Fukao, T. et al. An evolutionarily conserved mechanism for microRNA-223 expression revealed by microRNA gene profiling. Cell 129, 617–631 (2007).

    Article  CAS  PubMed  Google Scholar 

  77. Felli, N. et al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc. Natl. Acad. Sci. USA 102, 18081–18086 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rosa, A. et al. The interplay between the master transcription factor PU.1 and miR-424 regulates human monocyte/macrophage differentiation. Proc. Natl. Acad. Sci. USA 104, 19849–19854 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Pheasant, M. & Mattick, J.S. Raising the estimate of functional human sequences. Genome Res. 17, 1245–1253 (2007).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We apologize to those whose work we were unable to cite because of space limitations. We thank C. Koenig for developing the diagram presented in Figure 1. Supported by the US National Institutes of Health (D.B), the Irvington Institute Fellowship Program of the Cancer Research Institute (R.M.O.) and the American Society of Hematology (D.S.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Baltimore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baltimore, D., Boldin, M., O'Connell, R. et al. MicroRNAs: new regulators of immune cell development and function. Nat Immunol 9, 839–845 (2008). https://doi.org/10.1038/ni.f.209

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.f.209

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing