Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Apoptosis in the development and maintenance of the immune system

Abstract

Programmed cell death is essential for the development and maintenance of cellular homeostasis of the immune system. The Bcl-2 family of proteins comprises both pro-apoptotic and anti-apoptotic members. A subset of pro-apoptotic members, called 'BH3-only' proteins, share sequence homology only in the minimal death domain, designated the Bcl-2 homology 3 (BH3) domain. BH3-only proteins operate as upstream sentinels, selectively sensing both intrinsic and extrinsic death stimuli. They communicate this information to the pro-apoptotic 'multidomain' members Bax or Bak—a process that is antagonized by anti-apoptotic members of the Bcl-2 family. The functional balance of pro-apoptotic versus anti-apoptotic influences, which operates at organelles, determines whether a lymphocyte will live or die. BH3-only molecules, often working in concert, compete for downstream multidomain pro- and anti-apoptotic BCL-2 members to control serial stages of lymphocyte development and homeostasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Cell death pathways.
Figure 3: Detail of the mitochondrial apoptotic pathway.

Similar content being viewed by others

References

  1. Vaux, D.L. & Korsmeyer, S.J. Cell death in development. Cell 96, 245–254 (1999).

    CAS  PubMed  Google Scholar 

  2. Kerr, J.F., Wyllie, A.H. & Currie, A.R. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26, 239–257 (1972).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bakhshi, A. et al. Cloning the chromosomal breakpoint of t(14;18) human lymphomas: clustering around JH on chromosome 14 and near a transcriptional unit on 18. Cell 41, 899–906 (1985).

    CAS  PubMed  Google Scholar 

  4. Cleary, M.L. & Sklar, J. Nucleotide sequence of a t(14;18) chromosomal breakpoint in follicular lymphoma and demonstration of a breakpoint-cluster region near a transcriptionally active locus on chromosome 18. Proc. Natl. Acad. Sci. USA 82, 7439–7443 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Tsujimoto, Y., Gorham, J., Cossman, J., Jaffe, E. & Croce, C.M. The t(14;18) chromosome translocations involved in B-cell neoplasms result from mistakes in VDJ joining. Science 229, 1390–1393 (1985).

    CAS  PubMed  Google Scholar 

  6. Hockenbery, D., Nunez, G., Milliman, C., Schreiber, R.D. & Korsmeyer, S.J. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature 348, 334–336 (1990).

    CAS  PubMed  Google Scholar 

  7. Hockenbery, D.M., Oltvai, Z.N., Yin, X.M., Milliman, C.L. & Korsmeyer, S.J. Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75, 241–251 (1993).

    CAS  PubMed  Google Scholar 

  8. Vaux, D.L., Cory, S. & Adams, J.M. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature 335, 440–442 (1988).

    CAS  PubMed  Google Scholar 

  9. McDonnell, T.J. et al. bcl-2–immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation. Cell 57, 79–88 (1989).

    CAS  PubMed  Google Scholar 

  10. Gross, A., McDonnell, J.M. & Korsmeyer, S.J. BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 13, 1899–1911 (1999).

    CAS  PubMed  Google Scholar 

  11. Thompson, C.B. Apoptosis in the pathogenesis and treatment of disease. Science 267, 1456–1462 (1995).

    CAS  PubMed  Google Scholar 

  12. Owen, J.J. & Jenkinson, E.J. Apoptosis and T-cell repertoire selection in the thymus. Ann. NY Acad. Sci. 663, 305–310 (1992).

    CAS  PubMed  Google Scholar 

  13. Jameson, S.C., Hogquist, K.A. & Bevan, M.J. Positive selection of thymocytes. Annu. Rev. Immunol. 13, 93–126 (1995).

    CAS  PubMed  Google Scholar 

  14. Ashton-Rickardt, P.G. & Tonegawa, S. A differential-avidity model for T-cell selection. Immunol. Today 15, 362–366 (1994).

    CAS  PubMed  Google Scholar 

  15. Baird, A.M., Gerstein, R.M. & Berg, L.J. The role of cytokine receptor signaling in lymphocyte development. Curr. Opin. Immunol. 11, 157–166 (1999).

    CAS  PubMed  Google Scholar 

  16. Baird, A.M., Lucas, J.A. & Berg, L.J. A profound deficiency in thymic progenitor cells in mice lacking Jak3. J. Immunol. 165, 3680–3688 (2000).

    CAS  PubMed  Google Scholar 

  17. Nosaka, T. et al. Defective lymphoid development in mice lacking Jak3. Science 270, 800–802 (1995).

    CAS  PubMed  Google Scholar 

  18. Thomis, D.C., Gurniak, C.B., Tivol, E., Sharpe, A.H. & Berg, L.J. Defects in B lymphocyte maturation and T lymphocyte activation in mice lacking Jak3. Science 270, 794–797 (1995).

    CAS  PubMed  Google Scholar 

  19. Miyazaki, T. et al. Three distinct IL-2 signaling pathways mediated by bcl-2, c-myc, and lck cooperate in hematopoietic cell proliferation. Cell 81, 223–231 (1995).

    CAS  PubMed  Google Scholar 

  20. Akbar, A.N. et al. Interleukin-2 receptor common γ-chain signaling cytokines regulate activated T cell apoptosis in response to growth factor withdrawal: selective induction of anti-apoptotic (bcl-2, bcl-xL) but not pro-apoptotic (bax, bcl-xS) gene expression. Eur J. Immunol. 26, 294–299 (1996).

    CAS  PubMed  Google Scholar 

  21. von Freeden-Jeffry, U., Solvason, N., Howard, M. & Murray, R. The earliest T lineage-committed cells depend on IL-7 for Bcl-2 expression and normal cell cycle progression. Immunity 7, 147–154 (1997).

    CAS  PubMed  Google Scholar 

  22. Maraskovsky, E. et al. Bcl-2 can rescue T lymphocyte development in interleukin-7 receptor-deficient mice but not in mutant Rag-1−/− mice. Cell 89, 1011–1019 (1997).

    CAS  PubMed  Google Scholar 

  23. Akashi, K., Kondo, M., von Freeden-Jeffry, U., Murray, R. & Weissman, I.L. Bcl-2 rescues T lymphopoiesis in interleukin-7 receptor–deficient mice. Cell 89, 1033–1041 (1997).

    CAS  PubMed  Google Scholar 

  24. Thompson, C.B. et al. What keeps a resting T cell alive? Cold Spring Harb. Symp. Quant. Biol. 64, 383–387 (1999).

    CAS  PubMed  Google Scholar 

  25. Ahmed, R. & Gray, D. Immunological memory and protective immunity: understanding their relation. Science 272, 54–60 (1996).

    CAS  PubMed  Google Scholar 

  26. June, C.H., Ledbetter, J.A., Gillespie, M.M., Lindsten, T. & Thompson, C.B. T-cell proliferation involving the CD28 pathway is associated with cyclosporine-resistant interleukin 2 gene expression. Mol. Cell Biol. 7, 4472–4481 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Boise, L.H. et al. CD28 costimulation can promote T cell survival by enhancing the expression of Bcl-XL . Immunity 3, 87–98 (1995).

    CAS  PubMed  Google Scholar 

  28. Grillot, D.A. et al. bcl-x exhibits regulated expression during B cell development and activation and modulates lymphocyte survival in transgenic mice. J. Exp. Med. 183, 381–391 (1996).

    CAS  PubMed  Google Scholar 

  29. Fisher, G.H. et al. Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell 81, 935–946 (1995).

    CAS  PubMed  Google Scholar 

  30. Boussiotis, V.A., Lee, B.J., Freeman, G.J., Gribben, J.G. & Nadler, L.M. Induction of T cell clonal anergy results in resistance, whereas CD28-mediated costimulation primes for susceptibility to Fas- and Bax-mediated programmed cell death. J. Immunol. 159, 3156–3167 (1997).

    CAS  PubMed  Google Scholar 

  31. Gribben, J.G. et al. CTLA4 mediates antigen-specific apoptosis of human T cells. Proc. Natl. Acad. Sci. USA 92, 811–815 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang, X., Sun, S., Hwang, I., Tough, D.F. & Sprent, J. Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. Immunity 8, 591–599 (1998).

    CAS  PubMed  Google Scholar 

  33. Schluns, K.S., Kieper, W.C., Jameson, S.C. & Lefrancois, L. Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nat. Immunol. 1, 426–432 (2000).

    CAS  PubMed  Google Scholar 

  34. Lodolce, J.P. et al. IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 9, 669–676 (1998).

    CAS  PubMed  Google Scholar 

  35. Wei, M.C. et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292, 727–730 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Knudson, C.M., Tung, K.S., Tourtellotte, W.G., Brown, G.A. & Korsmeyer, S.J. Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science 270, 96–99 (1995).

    CAS  PubMed  Google Scholar 

  37. Lindsten, T. et al. The combined functions of proapoptotic Bcl-2 family members Bak and Bax are essential for normal development of multiple tissues. Mol. Cell 6, 1389–1399 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Rathmell, J.C., Lindsten, T., Zong, W.X., Cinalli, R.M. & Thompson, C.B. Deficiency in Bak and Bax perturbs thymic selection and lymphoid homeostasis. Nat. Immunol. 3, 932–939 (2002).

    CAS  PubMed  Google Scholar 

  39. Cheng, E.H. et al. BCL-2, BCL-XL sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol. Cell 8, 705–711 (2001).

    CAS  PubMed  Google Scholar 

  40. Wei, M.C. et al. tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev. 14, 2060–2071 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Letai, A. et al. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2, 183–192 (2002).

    CAS  PubMed  Google Scholar 

  42. Yang, J. et al. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275, 1129–1132 (1997).

    CAS  PubMed  Google Scholar 

  43. Kluck, R.M., Bossy-Wetzel, E., Green, D.R. & Newmeyer, D.D. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275, 1132–1136 (1997).

    CAS  PubMed  Google Scholar 

  44. Liu, X., Kim, C.N., Yang, J., Jemmerson, R. & Wang, X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86, 147–157 (1996).

    CAS  PubMed  Google Scholar 

  45. Du, C., Fang, M., Li, Y., Li, L. & Wang, X. Smac, a mitochondrial protein that promotes cytochrome c–dependent caspase activation by eliminating IAP inhibition. Cell 102, 33–42 (2000).

    CAS  PubMed  Google Scholar 

  46. Verhagen, A.M. et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102, 43–53 (2000).

    CAS  PubMed  Google Scholar 

  47. Duckett, C.S. et al. A conserved family of cellular genes related to the baculovirus iap gene and encoding apoptosis inhibitors. EMBO J. 15, 2685–2694 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Uren, A.G., Pakusch, M., Hawkins, C.J., Puls, K.L. & Vaux, D.L. Cloning and expression of apoptosis inhibitory protein homologs that function to inhibit apoptosis and/or bind tumor necrosis factor receptor-associated factors. Proc. Natl. Acad. Sci. USA 93, 4974–4978 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Susin, S.A. et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441–446 (1999).

    CAS  PubMed  Google Scholar 

  50. Joza, N. et al. Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 410, 549–554 (2001).

    CAS  PubMed  Google Scholar 

  51. Nagata, S. Apoptosis by death factor. Cell 88, 355–365 (1997).

    CAS  PubMed  Google Scholar 

  52. Varfolomeev, E.E. et al. Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity 9, 267–276 (1998).

    CAS  PubMed  Google Scholar 

  53. Scaffidi, C. et al. Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 17, 1675–1687 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Strasser, A., Harris, A.W., Huang, D.C., Krammer, P.H. & Cory, S. Bcl-2 and Fas/APO-1 regulate distinct pathways to lymphocyte apoptosis. EMBO J. 14, 6136–6147 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Li, H., Zhu, H., Xu, C.J. & Yuan, J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94, 491–501 (1998).

    CAS  PubMed  Google Scholar 

  56. Luo, X., Budihardjo, I., Zou, H., Slaughter, C. & Wang, X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94, 481–490 (1998).

    CAS  PubMed  Google Scholar 

  57. Yin, X.M. et al. Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 400, 886–891 (1999).

    CAS  PubMed  Google Scholar 

  58. Zha, J., Weiler, S., Oh, K.J., Wei, M.C. & Korsmeyer, S.J. Posttranslational N-myristoylation of BID as a molecular switch for targeting mitochondria and apoptosis. Science 290, 1761–1765 (2000).

    CAS  PubMed  Google Scholar 

  59. Datta, S.R., Brunet, A. & Greenberg, M.E. Cellular survival: a play in three Akts. Genes Dev. 13, 2905–2927 (1999).

    CAS  PubMed  Google Scholar 

  60. Kohn, A.D., Summers, S.A., Birnbaum, M.J. & Roth, R.A. Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J. Biol. Chem. 271, 31372–31378 (1996).

    CAS  PubMed  Google Scholar 

  61. Wang, Q. et al. Protein kinase B/Akt participates in GLUT4 translocation by insulin in L6 myoblasts. Mol. Cell. Biol. 19, 4008–4018 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Summers, S.A., Garza, L.A., Zhou, H. & Birnbaum, M.J. Regulation of insulin-stimulated glucose transporter GLUT4 translocation and Akt kinase activity by ceramide. Mol. Cell. Biol. 18, 5457–5464 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Harada, H., Andersen, J.S., Mann, M., Terada, N. & Korsmeyer, S.J. p70S6 kinase signals cell survival as well as growth, inactivating the pro-apoptotic molecule BAD. Proc. Natl. Acad. Sci. USA 98, 9666–9670 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Harada, H. et al. Phosphorylation and inactivation of BAD by mitochondria-anchored protein kinase A. Mol. Cell 3, 413–422 (1999).

    CAS  PubMed  Google Scholar 

  65. Shimamura, A., Ballif, B.A., Richards, S.A. & Blenis, J. Rsk1 mediates a MEK-MAP kinase survival signal. Curr. Biol. 10, 127–135 (2000).

    CAS  PubMed  Google Scholar 

  66. Datta, S.R. et al. Survival factor–mediated BAD phosphorylation raises the mitochondrial threshold for apoptosis. Dev. Cell 3, 631–643 (2002).

    CAS  PubMed  Google Scholar 

  67. Peschon, J.J. et al. Early lymphocyte expansion is severely impaired in interleukin 7 receptor–deficient mice. J. Exp. Med. 180, 1955–1960 (1994).

    CAS  PubMed  Google Scholar 

  68. von Freeden-Jeffry, U. et al. Lymphopenia in interleukin (IL)-7 gene–deleted mice identifies IL-7 as a nonredundant cytokine. J. Exp. Med. 181, 1519–1526 (1995).

    CAS  PubMed  Google Scholar 

  69. Zinkel, S.S. et al. Proapoptotic BID is required for myeloid homeostasis and tumor suppression. Genes Dev. 17, 229–239 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Bouillet, P. et al. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 286, 1735–1738 (1999).

    CAS  PubMed  Google Scholar 

  71. Puthalakath, H., Huang, D.C., O'Reilly, L.A., King, S.M. & Strasser, A. The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol. Cell 3, 287–296 (1999).

    CAS  PubMed  Google Scholar 

  72. Strasser, A., Harris, A.W. & Cory, S. bcl-2 transgene inhibits T cell death and perturbs thymic self-censorship. Cell 67, 889–899 (1991).

    CAS  PubMed  Google Scholar 

  73. Hildeman, D.A. et al. Activated T cell death in vivo mediated by proapoptotic bcl-2 family member bim. Immunity 16, 759–767 (2002).

    CAS  PubMed  Google Scholar 

  74. Bouillet, P. et al. BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature 415, 922–926 (2002).

    CAS  PubMed  Google Scholar 

  75. Jiang, A. & Clark, E.A. Involvement of Bik, a proapoptotic member of the Bcl-2 family, in surface IgM-mediated B cell apoptosis. J. Immunol. 166, 6025–6033 (2001).

    CAS  PubMed  Google Scholar 

  76. Nakano, K. & Vousden, K.H. PUMA, a novel proapoptotic gene, is induced by p53. Mol. Cell 7, 683–694 (2001).

    CAS  PubMed  Google Scholar 

  77. Oda, E. et al. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288, 1053–1058 (2000).

    CAS  PubMed  Google Scholar 

  78. Yu, J., Zhang, L., Hwang, P.M., Kinzler, K.W. & Vogelstein, B. PUMA induces the rapid apoptosis of colorectal cancer cells. Mol. Cell 7, 673–682 (2001).

    CAS  PubMed  Google Scholar 

  79. Yin, X.M., Oltvai, Z.N. & Korsmeyer, S.J. BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax. Nature 369, 321–323 (1994).

    CAS  PubMed  Google Scholar 

  80. Gross, A., Jockel, J., Wei, M.C. & Korsmeyer, S.J. Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis. EMBO J. 17, 3878–3885 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Veis, D.J., Sorenson, C.M., Shutter, J.R. & Korsmeyer, S.J. Bcl-2–deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 75, 229–240 (1993).

    CAS  PubMed  Google Scholar 

  82. Bouillet, P., Cory, S., Zhang, L.C., Strasser, A. & Adams, J.M. Degenerative disorders caused by Bcl-2 deficiency prevented by loss of its BH3-only antagonist Bim. Dev. Cell 1, 645–653 (2001).

    CAS  PubMed  Google Scholar 

  83. Motoyama, N., Kimura, T., Takahashi, T., Watanabe, T. & Nakano, T. bcl-x prevents apoptotic cell death of both primitive and definitive erythrocytes at the end of maturation. J. Exp. Med. 189, 1691–1698 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Veis, D.J., Sentman, C.L., Bach, E.A. & Korsmeyer, S.J. Expression of the Bcl-2 protein in murine and human thymocytes and in peripheral T lymphocytes. J. Immunol. 151, 2546–2554 (1993).

    CAS  PubMed  Google Scholar 

  85. Chao, D.T. & Korsmeyer, S.J. BCL-XL-regulated apoptosis in T cell development. Int. Immunol. 9, 1375–1384 (1997).

    CAS  PubMed  Google Scholar 

  86. Sentman, C.L., Shutter, J.R., Hockenbery, D., Kanagawa, O. & Korsmeyer, S.J. bcl-2 inhibits multiple forms of apoptosis but not negative selection in thymocytes. Cell 67, 879–888 (1991).

    CAS  PubMed  Google Scholar 

  87. Strasser, A., Harris, A.W., von Boehmer, H. & Cory, S. Positive and negative selection of T cells in T-cell receptor transgenic mice expressing a bcl-2 transgene. Proc. Natl. Acad. Sci. USA 91, 1376–1380 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Linette, G.P., Hess, J.L., Sentman, C.L. & Korsmeyer, S.J. Peripheral T-cell lymphoma in lckpr–bcl-2 transgenic mice. Blood 86, 1255–1260 (1995).

    CAS  PubMed  Google Scholar 

  89. Linette, G.P. et al. Bcl-2 is upregulated at the CD4+CD8+ stage during positive selection and promotes thymocyte differentiation at several control points. Immunity 1, 197–205 (1994).

    CAS  PubMed  Google Scholar 

  90. Strasser, A., Harris, A.W., Corcoran, L.M. & Cory, S. Bcl-2 expression promotes B- but not T-lymphoid development in scid mice. Nature 368, 457–460 (1994).

    CAS  PubMed  Google Scholar 

  91. Newton, K., Harris, A.W., Bath, M.L., Smith, K.G. & Strasser, A. A dominant interfering mutant of FADD/MORT1 enhances deletion of autoreactive thymocytes and inhibits proliferation of mature T lymphocytes. EMBO J. 17, 706–718 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Maraskovsky, E., Peschon, J.J., McKenna, H., Teepe, M. & Strasser, A. Overexpression of Bcl-2 does not rescue impaired B lymphopoiesis in IL-7 receptor–deficient mice but can enhance survival of mature B cells. Int. Immunol. 10, 1367–1375 (1998).

    CAS  PubMed  Google Scholar 

  93. Kondo, M., Akashi, K., Domen, J., Sugamura, K. & Weissman, I.L. Bcl-2 rescues T lymphopoiesis, but not B or NK cell development, in common γ chain–deficient mice. Immunity 7, 155–162 (1997).

    CAS  PubMed  Google Scholar 

  94. Ranger, A.M., Malynn, B.A. & Korsmeyer, S.J. Mouse models of cell death. Nat. Genet. 28, 113–118 (2001).

    CAS  PubMed  Google Scholar 

  95. Hara, H. et al. The apoptotic protease-activating factor 1–mediated pathway of apoptosis is dispensable for negative selection of thymocytes. J. Immunol. 168, 2288–2295 (2002).

    CAS  PubMed  Google Scholar 

  96. Marsden, V.S. et al. Apoptosis initiated by Bcl-2–regulated caspase activation independently of the cytochrome c/Apaf-1/caspase-9 apoptosome. Nature 419, 634–637 (2002).

    CAS  PubMed  Google Scholar 

  97. Kuida, K. et al. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384, 368–372 (1996).

    CAS  PubMed  Google Scholar 

  98. Woo, M. et al. Essential contribution of caspase 3/CPP32 to apoptosis and its associated nuclear changes. Genes Dev. 12, 806–819 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Yeh, W.C. et al. FADD: essential for embryo development and signaling from some, but not all, inducers of apoptosis. Science 279, 1954–1958 (1998).

    CAS  PubMed  Google Scholar 

  100. Zhang, J., Cado, D., Chen, A., Kabra, N.H. & Winoto, A. Fas-mediated apoptosis and activation-induced T-cell proliferation are defective in mice lacking FADD/Mort1. Nature 392, 296–300 (1998).

    CAS  PubMed  Google Scholar 

  101. Lens, S.M. et al. The caspase 8 inhibitor c-FLIPL modulates T-cell receptor-induced proliferation but not activation-induced cell death of lymphocytes. Mol. Cell. Biol. 22, 5419–5433 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank E. D. Smith for figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanley J. Korsmeyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Opferman, J., Korsmeyer, S. Apoptosis in the development and maintenance of the immune system. Nat Immunol 4, 410–415 (2003). https://doi.org/10.1038/ni0503-410

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni0503-410

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing