Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Proteolysis-independent regulation of PI3K by Cbl-b–mediated ubiquitination in T cells

Abstract

Cbl-b, a ring-type E3 ubiquitin protein ligase, is implicated in setting the threshold of T lymphocyte activation. The p85 regulatory subunit of phosphatidylinositol 3 kinase (PI3K) was identified as a substrate for Cbl-b. We have shown that Cbl-b negatively regulated p85 in a proteolysis-independent manner. Cbl-b is involved in the recruitment of p85 to CD28 and T cell antigen receptor ζ through its E3 ubiquitin ligase activity. The enhanced activation of Cbl-b−/− T cells was suppressed by the inhibition of PI3K. The results suggest a proteolysis-independent function for Cbl-b in the modification of protein recruitment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cbl-b does not affect the stability of p85.
Figure 2: Cbl-b regulates p85 recruitment to CD28.
Figure 3: A functional role for the Cbl-b ring finger.
Figure 4: Effect of PI3K inhibitors on T cell activation.
Figure 5: Cbl-b deficiency affects the association between p85 and TCRζ.
Figure 6: Effect of CD28 deficiency on PI3K activation.

Similar content being viewed by others

References

  1. Chambers, C. A. & Allison, J. P. Costimulatory regulation of T cell function. Curr. Opin. Cell Biol. 11, 203–210 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Keane, M. M., Rivero-Lezcano, O. M., Mitchell, J. A., Robbins, K. C. & Lipkowitz, S. Cloning and characterization of cbl-b: a SH3 binding protein with homology to the c-cbl proto-oncogene. Oncogene 10, 2367–2377 (1995).

    CAS  PubMed  Google Scholar 

  3. Thien, C. B. & Langdon, W. Y. Cbl: many adaptations to regulate protein tyrosine kinases. Nature Rev. Mol. Cell Biol. 2, 294–307 (2001).

    Article  CAS  Google Scholar 

  4. Bachmaier, K. et al. Negative regulation of lymphocyte activation and autoimmunity by the molecular adaptor Cbl-b. Nature 403, 211–216 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Chiang, Y. J. et al. Cbl-b regulates the CD28 dependence of T-cell activation. Nature 403, 216–220 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Krawczyk, C. et al. Cbl-b is a negative regulator of receptor clustering and raft aggregation in T cells. Immunity 13, 463–473 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Miyake, S., Lupher, M. L. Jr, Druker, B. & Band, H. The tyrosine kinase regulator Cbl enhances the ubiquitination and degradation of the platelet-derived growth factor receptor α. Proc. Natl Acad. Sci. USA 95, 7927–7932 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee, P. S. et al. The Cbl protooncoprotein stimulates CSF-1 receptor multiubiquitination and endocytosis, and attenuates macrophage proliferation. EMBO J. 18, 3616–3628 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Levkowitz, G. et al. Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol. Cell 4, 1029–1040 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Joazeiro, C. A. et al. The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science 286, 309–312 (1999).

    Article  CAS  PubMed  Google Scholar 

  11. Yokouchi, M. et al. Ligand-induced ubiquitination of the epidermal growth factor receptor involves the interaction of the c-Cbl RING finger and UbcH7. J. Biol. Chem. 274, 31707–31712 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Zheng, N., Wang, P., Jeffrey, P. D. & Pavletich, N. P. Structure of a c-Cbl-UbcH7 complex: RING domain function in ubiquitin-protein ligases. Cell 102, 533–539 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Hochstrasser, M. Ubiquitin-dependent protein degradation. Annu. Rev. Genet. 30, 405–439 (1996).

    Article  CAS  PubMed  Google Scholar 

  14. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Fang, D. et al. Cbl-b, a RING-type E3 ubiquitin ligase, targets phosphatidylinositol 3-kinase for ubiquitination in T cells. J. Biol. Chem. 276, 4872–4878 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Han, J. et al. Role of substrates and products of PI 3-kinase in regulating activation of Rac-related guanosine triphosphatases by Vav. Science 279, 558–560 (1998).

    Article  CAS  PubMed  Google Scholar 

  17. Scheffner, M., Huibregtse, J. M., Vierstra, R. D. & Howley, P. M. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 75, 495–505 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. Dhand, R. et al. PI 3-kinase: structural and functional analysis of intersubunit interactions. EMBO J. 13, 511–521 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hu, P. & Schlessinger, J. Direct association of p110β phosphatidylinositol 3-kinase with p85 is mediated by an N-terminal fragment of p110β. Mol. Cell. Biol. 14, 2577–2583 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rameh, L. E. & Cantley, L. C. The role of phosphoinositide 3-kinase lipid products in cell function. J. Biol. Chem. 274, 8347–8350 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Cai, Y.-C. et al. Selective CD28pYMNM mutations implicate phophatidylinositol 3-kinase in CD86-CD28-mediated costimulation. Immunity 3, 417–426 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Exley, M., Varticovski, L., Peter, M., Sancho, J. & Terhorst, C. Association of phosphatidylinositol 3-kinase with a specific sequence of the T cell receptor ζ chain is dependent on T cell activation. J. Biol. Chem. 269, 15140–15146 (1994).

    CAS  PubMed  Google Scholar 

  23. Shahinian, A. et al. Differential T cell costimulatory requirements in CD28-deficient mice. Science 261, 609–612 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Green, J. M. et al. Absence of B7-dependent responses in CD28-deficient mice. Immunity 1, 501–508 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Kaiser, P., Flick, K., Wittenberg, C. & Reed, S. I. Regulation of transcription by ubiquitination without proteolysis: Cdc34/SCF(Met30)-mediated inactivation of the transcription factor Met4. Cell 102, 303–314 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Hoppe, T. et al. Activation of a membrane-bound transcription factor by regulated ubiquitin/proteasome-dependent processing. Cell 102, 577–586 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. de Aos, I. et al. Tyrosine phosphorylation of the CD3ɛ subunit of the T cell antigen receptor mediates enhanced association with phosphatidylinositol 3-kinase in Jurkat T cells. J. Biol. Chem. 272, 25310–25318 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Wulfing, C. & Davis, M. M. A receptor-cytoskeletal movement triggered by costimulation during T cell activation. Science 282, 2266–2269 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Viola, A., Schroeder, S., Sakakibara, Y. & Lanzavecchia, A. T lymphocyte costimulation mediated by reorganization of membrane microdomains. Science 283, 680–682 (1999).

    Article  CAS  PubMed  Google Scholar 

  30. Kane, L. P., Andres, P. G., Howland, K. C., Abbas, A. K. & Weiss, A. Akt provides the CD28 costimulatory signal for up-regulation of IL-2 and IFN-γ but not Th2 cytokines. Nature Immunol. 2, 37–44 (2001).

    Article  CAS  Google Scholar 

  31. Zhang, W., Sloan-Lancaster, J., Kitchen, J., Trible, R. P. & Samelson, L. E. LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell 92, 83–92 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Okada, T., Maeda, A., Iwamatsu, A., Gotoh, K. & Kurosaki, T. BCAP: the tyrosine kinase substrate that connects B cell receptor to phosphoinositide 3-kinase activation. Immunity 13, 817–827 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Murphy, M. A. et al. Tissue hyperplasia and enhanced T-cell signalling via ZAP-70 in c-Cbl-deficient mice. Mol. Cell. Biol. 18, 487–4882 (1998).

    Article  Google Scholar 

  34. Naramura, M., Kole, H. K., Hu, R.-J. & Gu, H. Altered thymic positive selection and intracellular signals in Cbl-deficient mice. Proc. Natl Acad. Sci. USA 95, 15547–15552 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang, H. Y. et al. Cbl promotes ubiquitination of the T cell receptor ζ through an adaptor function of Zap-70. J. Biol. Chem. 276, 26004–26011 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Elly, C. et al. Tyrosine phosphorylation and complex formation of Cbl-b upon T cell receptor stimulation. Oncogene 18, 1153–1162 (1999).

    Article  Google Scholar 

  37. Qiu, L. et al. Recognition and ubiquitination of Notch by Itch, a Hect-type E3 ubiquitin ligase. J. Biol. Chem. 275, 35734–35737 (2000).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank C. Elly, B. Gao and Y. Altman for technical assistance; A. Altman and members of the Division of Cell Biology for support and suggestions; M. Naramura and H. Gu for Cbl-b−/− mice; and J. Penninger for discussions. Supported by National Institutes of Health Grant RO1DK56558 and arthritis foundation (Y.-C. L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Cai Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, D., Liu, YC. Proteolysis-independent regulation of PI3K by Cbl-b–mediated ubiquitination in T cells. Nat Immunol 2, 870–875 (2001). https://doi.org/10.1038/ni0901-870

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni0901-870

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing