Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Human thymic stromal lymphopoietin promotes dendritic cell–mediated CD4+ T cell homeostatic expansion

Abstract

T cell homeostasis is a self-regulating process for maintaining the size of the peripheral T cell pool. Although dendritic cells (DCs) seem to be important in T cell homeostasis, the molecular regulation of DC-mediated T cell homeostasis is unknown. We show that human DCs activated by thymic stromal lymphopoietin (TSLP) induced a robust expansion of autologous CD4+ T cell populations, which depended on self peptide–major histocompatibility complex. The proliferating T cells adopted and maintained a central memory polyclonal phenotype and could differentiate into T helper type 1 or type 2 effector cells. These results, together with findings of TSLP expression in epithelial cells of mucosal lymphoid tissues and thymus, indicate that TSLP is involved in DC-mediated CD4+ T cell homeostasis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Naive CD4+ T cell proliferation and population expansion with autologous DCs activated by TSLP and other activators.
Figure 2: Cell surface markers characteristic of the CD4+ T cell population expanded by autologous TSLP-DCs.
Figure 3: Cytokine-producing capacity and responsiveness to TCR stimulation of CD4+ T cell populations expanded by autologous TSLP-DCs.
Figure 4: Central and effector memory CD4+ T cell proliferation and population expansion with autologous TSLP-DCs or Med-DCs.
Figure 5: Required factors and clonality of the CD4+ T cell population expanded by autologous TSLP-DCs.
Figure 6: T cell–DC interaction and DC survival.
Figure 7: Expression of human TSLP by cryptic epithelial cells of the tonsil and thymic epithelial cells of Hassal's corpuscles in the thymus.

Similar content being viewed by others

References

  1. Jameson, S.C. Maintaining the norm: T-cell homeostasis. Nat. Rev. Immunol. 2, 547–556 (2002).

    Article  CAS  Google Scholar 

  2. Mackall, C.L., Hakim, F.T. & Gress, R.E. Restoration of T-cell homeostasis after T-cell depletion. Semin. Immunol. 9, 339–346 (1997).

    Article  CAS  Google Scholar 

  3. Grossman, Z., Meier-Schellersheim, M., Sousa, A.E., Victorino, R.M.M. & Paul, W.E. CD4+ T-cell depletion in HIV infection: Are we closer to understanding the cause? Nat. Med. 8, 319–323 (2002).

    Article  CAS  Google Scholar 

  4. Marrack, P. et al. Homeostasis of αβ TCR+ T cells. Nat. Immunol. 1, 107–111 (2000).

    Article  CAS  Google Scholar 

  5. Goldrath, A.W. Maintaining the status quo: T-cell homeostasis. Microbes Infect. 4, 539–545 (2002).

    Article  CAS  Google Scholar 

  6. Prlic, M., Lefrancois, L. & Jameson, S.C. Multiple choices: regulation of memory CD8 T cell generation and homeostasis by interleukin (IL)-7 and IL-15. J. Exp. Med. 195, F49–52 (2002).

    Article  CAS  Google Scholar 

  7. Sprent, J. & Surh, C.D. Cytokines and T cell homeostasis. Immunol. Lett. 85, 145–149 (2003).

    Article  CAS  Google Scholar 

  8. Seddon, B., Tomlinson, P. & Zamoyska, R. Interleukin 7 and T cell receptor signals regulate homeostasis of CD4 memory cells. Nat. Immunol. 4, 680–686 (2000).

    Article  Google Scholar 

  9. Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708–712 (1999).

    Article  CAS  Google Scholar 

  10. Geginat, J., Sallusto, F. & Lanzavecchia, A. Cytokine-driven proliferation and differentiation of human naive, central memory, and effector memory CD4+ T cells. J. Exp. Med. 194, 1711–1719 (2001).

    Article  CAS  Google Scholar 

  11. Reche, P.A. et al. Human thymic stromal lymphopoietin preferentially stimulates myeloid cells. J. Immunol. 167, 336–343 (2001).

    Article  CAS  Google Scholar 

  12. Soumelis, V. et al. Human epithelial cells trigger dendritic cell-mediated allergic inflammation by producing TSLP. Nat. Immunol. 3, 673–680 (2002).

    Article  CAS  Google Scholar 

  13. Ge, Q., Palliser, D., Eisen, H.N. & Chen, J. Homeostatic T cell proliferation in a T cell-dendritic cell coculture system. Proc. Natl. Acad. Sci. USA 99, 2983–2988 (2002).

    Article  CAS  Google Scholar 

  14. Soares, M.V.D. et al. IL-7-dependent extrathymic expansion of CD45RA+ T cells enables preservation of a naive repertoire. J. Immunol. 161, 5909–5917 (1998).

    CAS  Google Scholar 

  15. Hassan, J. & Reen, D.J. IL-7 promotes the survival and maturation but not differentiation of human post-thymic CD4+ T cells. Eur. J. Immunol. 28, 3057–3065 (1998).

    Article  CAS  Google Scholar 

  16. Viret, C., Wong, F.S. & Janeway, C.A., Jr. Designing and maintaining the mature TCR repertoire: the continuum of self-peptide:self-MHC complex recognition. Immunity 10, 559–568 (1999).

    Article  CAS  Google Scholar 

  17. Bender, J., Mitchell, T., Kappler, J. & Marrack, P. CD4+ T cell division in irradiated mice requires peptides distinct from those responsible for thymic selection. J. Exp. Med. 190, 367–374 (1999).

    Article  CAS  Google Scholar 

  18. Oehen, S. & Brduscha-Reim, K. Naive cytotoxic T lymphocytes spontaneously acquire effector function in lymphocytopenic recipients: A pitfall for T cell memory studies? Eur. J. Immunol. 29, 608–614 (1999).

    Article  CAS  Google Scholar 

  19. Ernst, B., Lee, D.S., Chang, J.M., Sprent, J. & Surh, C.D. The peptide ligands mediating positive selection in the thymus control T cell survival and homeostatic proliferation in the periphery. Immunity 11, 173–181 (1999).

    Article  CAS  Google Scholar 

  20. Goldrath, A.W. & Bevan, M.J. Low-affinity ligands for the TCR drive proliferation of mature CD8+ T cells in lymphopenic hosts. Immunity 11, 183–190 (1999).

    Article  CAS  Google Scholar 

  21. Kieper, W.C. & Jameson, S.C. Homeostatic expansion and phenotypic conversion of naïve T cells in response to self peptide/MHC ligands. Proc. Natl. Acad. Sci. USA 96, 13306–13311 (1999).

    Article  CAS  Google Scholar 

  22. Piliero, L.M., Sanford, A.N., McDonald-McGinn, D.M., Zackai, E.H. & Sullivan, K.E. T cell homeostasis in human with thymic hypoplasia due to chromosome 22q11.2 deletion syndrome. Blood 103, 1020–1025 (2004).

    Article  CAS  Google Scholar 

  23. Kunkel, E.J. & Butcher, E.C. Chemokines and the tissue-specific migration of lymphocytes. Immunity 16, 1–4 (2002).

    Article  CAS  Google Scholar 

  24. Messi, M. et al. Memory and flexibility of cytokine gene expression as separable properties of human TH1 and TH2 lymphocytes. Nat. Immunol. 4, 78–86 (2002).

    Article  Google Scholar 

  25. Dutton, R.W., Bradley, L.M. & Swain, S.L. T cell memory. Annu. Rev. Immunol. 16, 201–223 (1998).

    Article  CAS  Google Scholar 

  26. Anderson, M.S. et al. Projection of an immunological self shadow within the thymus by the aire protein. Science 298, 1395–1401 (2002).

    Article  CAS  Google Scholar 

  27. Pitkanen, J. & Peterson, P. Autoimmune regulator: from loss of function to immunity. Genes Immun. 4, 12–21 (2003).

    Article  CAS  Google Scholar 

  28. Liston, A., Lesage, S., Wilson, J., Peltonen, L. & Goodnow, C.C. Aire regulates negative selection of organ-specific T cells. Nat. Immunol. 4, 350–354 (2003).

    Article  CAS  Google Scholar 

  29. Murali-Krishna, K. et al. Persistence of memory CD8 T cells in MHC class I-deficient mice. Science 286, 1377–1381 (1999).

    Article  CAS  Google Scholar 

  30. Ferreira, C., Barthlott, T., Garcia, S., Zamoyska, R. & Stockinger, B. Differential survival of naive CD4 and CD8 T cells. J. Immunol. 165, 3689–3694 (2000).

    Article  CAS  Google Scholar 

  31. Muranski, P., Chmielwoski, B. & Ignatowicz, L. Mature CD4+ T cells perceive a positively selecting class II MHC/peptide complex in the periphery. J. Immunol. 164, 3087–3094 (2000).

    Article  CAS  Google Scholar 

  32. Marrack, P. & Kappler, J. The staphylococcal enterotoxins and their relatives. Science 248, 705–711 (1990).

    Article  CAS  Google Scholar 

  33. Geginat, J., Lanzavecchia, A. & Sallusto, F. Proliferation and differentiation potential of human CD8+ memory T-cell subsets in response to antigen or homeostatic cytokines. Blood 101, 4260–4266 (2003).

    Article  CAS  Google Scholar 

  34. Miller, R.A. & Stutman, O. T cell repopulation from functionally restricted splenic progenitors: 10,000-fold expansion documented by using limiting dilution analyses. J. Immunol. 133, 2925–2932 (1984).

    CAS  Google Scholar 

  35. Bell, E.B., Sparshott, S.M., Drayson, M.T. & Ford, W.L. The stable and permanent expansion of functional T lymphocytes in athymic nude rats after a single injection of mature T cells. J. Immunol. 139, 1379–1384 (1987).

    CAS  Google Scholar 

  36. Rocha, B., Dautigny, N. & Pereira, P. Peripheral T lymphocytes: expansion potential and homeostatic regulation of pool sizes and CD4/CD8 ratios in vivo . Eur. J. Immunol. 19, 905–911 (1989).

    Article  CAS  Google Scholar 

  37. Sprent, J., Schaefer, M., Hurd, M., Surh, C.D. & Ron, Y. Mature murine B and T cells transferred to SCID mice can survive indefinitely and many maintain a virgin phenotype. J. Exp. Med. 174, 717–728 (1991).

    Article  CAS  Google Scholar 

  38. Takeda, S., Rodewald, H.R., Arakawa, H., Bluethmann, H. & Shimizu, T. MHC class II molecules are not required for survival of newly generated CD4+ T cells, but affect their long-term life span. Immunity 5, 217–228 (1996).

    Article  CAS  Google Scholar 

  39. Tanchot, C., Lemonnier, F.A., Perarnau, B., Freitas, A.A. & Rocha, B. Differential requirements for survival and proliferation of CD8 naïve or memory T cells. Science 276, 2057–2062 (1997).

    Article  CAS  Google Scholar 

  40. Rooke, R., Waltzinger, C., Benoist, C. & Mathis, D. Targeted complementation of MHC class II deficiency by intrathymic delivery of recombinant adenoviruses. Immunity 7, 123–134 (1997).

    Article  CAS  Google Scholar 

  41. Brocker, T. Survival of mature CD4 T lymphocytes is dependent on major histocompatibility complex class II-expressing dendritic cells. J. Exp. Med. 186, 1223–1232 (1997).

    Article  CAS  Google Scholar 

  42. Kirberg, J., Berns, A. & von Boehmer, H. Peripheral T cell survival requires continual ligation of the T cell receptor to major histocompatibility complex-encoded molecules. J. Exp. Med. 186, 1269–1275 (1997).

    Article  CAS  Google Scholar 

  43. Polic, B., Kunkel, D., Scheffold, A. & Rajewsky, K. How αβ T cells deal with induced TCRα ablation. Proc. Natl. Acad. Sci. USA 98, 8744–8749 (2001).

    Article  CAS  Google Scholar 

  44. Nussenzweig, M.C. & Steinman, R.M. Contribution of dendritic cells to stimulation of the murine syngeneic mixed leukocyte reaction. J. Exp. Med. 151, 1196–1212 (1980).

    Article  CAS  Google Scholar 

  45. Schluns, K.S., Kieper, W.C., Jameson, S.C. & Lefrancois, L. Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo . Nat. Immunol. 1, 426–432 (2000).

    Article  CAS  Google Scholar 

  46. Tan, J.T. et al. IL-7 is critical for homeostatic proliferation and survival of naïve T cells. Proc. Natl. Acad. Sci. USA 98, 8732–8737 (2001).

    Article  CAS  Google Scholar 

  47. Prlic, M., Blazar, B.R., Khoruts, A., Zell, T. & Jameson, S.C. Homeostatic expansion occurs independently of costimulatory signals. J. Immunol. 167, 5664–5668 (2001).

    Article  CAS  Google Scholar 

  48. Leonard, W.J. TSLP: finally in the limelight. Nat. Immunol. 3, 605–607 (2002).

    Article  CAS  Google Scholar 

  49. Quentmeier, H. et al. Cloning of human thymic stromal lymphopoietin (TSLP) and signaling mechanisms leading to proliferation. Leukemia 15, 1286–1292 (2001).

    Article  CAS  Google Scholar 

  50. Lyons, A.B. & Parish, C.R. Determination of lymphocyte division by flow cytometry. J. Immunol. Methods. 171, 131–137 (1994).

    Article  CAS  Google Scholar 

  51. D'Andrea, A. et al. Production of natural killer cell stimulatory factor (interleukin 12) by peripheral blood mononuclear cells. J. Exp. Med. 176, 1387–1398 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Desai, S. Jungers, J. Shoemaker and J. Cupp for cell sorting; D. Wylie for assistance in preparation of the manuscript; and L.L. Lanier, J. Chen, B. Su, S. Ullrich, M.F. Wilkinson and Y.-H. Wang for critical reading and suggestions. DNAX Research Institute is supported by Schering-Plough.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Jun Liu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, N., Hanabuchi, S., Soumelis, V. et al. Human thymic stromal lymphopoietin promotes dendritic cell–mediated CD4+ T cell homeostatic expansion. Nat Immunol 5, 426–434 (2004). https://doi.org/10.1038/ni1048

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1048

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing