Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Analysis of regulatory CD8 T cells in Qa-1-deficient mice

Abstract

The mouse protein Qa-1 (HLA-E in humans) is essential for immunological protection and immune regulation. Although Qa-1 has been linked to CD8 T cell–dependent suppression, the physiological relevance of this observation is unclear. We generated mice deficient in Qa-1 to develop an understanding of this process. Qa-1-deficient mice develop exaggerated secondary CD4 responses to foreign and self peptides. Enhanced responses to proteolipid protein self peptide were associated with resistance of Qa-1-deficient CD4 T cells to Qa-1-restricted CD8 T suppressor activity and increased susceptibility to experimental autoimmune encephalomyelitis. These findings delineate a Qa-1-dependent T cell–T cell inhibitory interaction that prevents the pathogenic expansion of autoreactive CD4 T cell populations and consequent autoimmune disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of targeted Qa-1 gene by PCR and Southern blot.
Figure 2: The response of Qa-1-deficient mice to HSV-1 (KOS) infection.
Figure 3: Induction of suppressive CD8 activity by SEA.
Figure 4: Protective effects of peptide preimmunization on the development of EAE.
Figure 5: Adoptive secondary anti-PLP responses.
Figure 6: T cell vaccination with OT-2 CD4 T cells induces suppressive CD8.

Similar content being viewed by others

References

  1. Cantor, H. T-cell receptor crossreactivity and autoimmune disease. Adv. Immunol. 75, 209–233 (2000).

    Article  CAS  Google Scholar 

  2. Bouneaud, C., Kourilsky, P. & Bousso, P. Impact of negative selection on the T cell repertoire reactive to a self-peptide: a large fraction of T cell clones escapes clonal deletion. Immunity 13, 829–840 (2000).

    Article  CAS  Google Scholar 

  3. Goldrath, A.W. & Bevan, M.J. Selecting and maintaining a diverse T-cell repertoire. Nature 402, 255–262 (1999).

    Article  CAS  Google Scholar 

  4. Slifka, M.K. et al. Preferential escape of subdominant CD8+ T cells during negative selection results in an altered antiviral T cell hierarchy. J. Immunol. 170, 1231–1239 (2003).

    Article  CAS  Google Scholar 

  5. Martin, D.A. et al. Defective CD95/APO-1/Fas signal complex formation in the human autoimmune lymphoproliferative syndrome, type Ia. Proc. Natl. Acad. Sci. USA 96, 4552–4557 (1999).

    Article  CAS  Google Scholar 

  6. Kearney, E.R., Pape, K.A., Loh, D.Y. & Jenkins, M.K. Visualization of peptide-specific T cell immunity and peripheral tolerance induction in vivo . Immunity 1, 327–339 (1994).

    Article  CAS  Google Scholar 

  7. Anderton, S.M., Radu, C.G., Lowrey, P.A., Ward, E.S. & Wraith, D.C. Negative selection during the peripheral immune response to antigen. J. Exp. Med. 193, 1–11 (2001).

    Article  CAS  Google Scholar 

  8. Panoutsakopoulou, V. et al. Analysis of the relationship between viral infection and autoimmune disease. Immunity 15, 137–147 (2001).

    Article  CAS  Google Scholar 

  9. von Herrath, M.G. & Harrison, L.C. Antigen-induced regulatory T cells in autoimmunity. Nat. Rev. Immunol. 3, 223–232 (2003).

    Article  CAS  Google Scholar 

  10. Gavin, M. & Rudensky, A. Control of immune homeostasis by naturally arising regulatory CD4+ T cells. Curr. Opin. Immunol. 15, 690–696 (2003).

    Article  CAS  Google Scholar 

  11. Wood, K.J. & Sakaguchi, S. Regulatory T cells in transplantation tolerance. Nat. Rev. Immunol. 3, 199–210 (2003).

    Article  CAS  Google Scholar 

  12. Noble, A., Zhao, Z.-S. & Cantor, H. Suppression of immune responses by CD8 cells: II. Qa-1 on activated B-cells stimulates CD8 cell suppression of Th2-dependent antibody responses. J. Immunol. 160, 566–571 (1998).

    CAS  PubMed  Google Scholar 

  13. Jiang, H. & Chess, L. The specific regulation of immune responses by CD8+ T cells restricted by the MHC class Ib molecule, Qa-1. Annu. Rev. Immunol. 18, 185–216 (2000).

    Article  CAS  Google Scholar 

  14. Jiang, H., Zhang, S.-L. & Pernis, B. Role of CD8+ T cells in murine experimental allergic encephalomyelitis. Science 256, 1213–1215 (1992).

    Article  CAS  Google Scholar 

  15. Jiang, H. et al. T cell vaccination induces TCR Vβ specific, Qa-1 restricted regulatory CD8+ T cells. Proc. Natl. Acad. Sci. USA 95, 4533–4537 (1998).

    Article  CAS  Google Scholar 

  16. Aldrich, C.J. et al. T cell recognition of QA-1b antigens on cells lacking a functional Tap-2 transporter. J. Immunol. 149, 3773–3777 (1992).

    CAS  PubMed  Google Scholar 

  17. Lo, W.F., Ong, H., Metcalf, E.S. & Soloski, M.J. T cell responses to gram-negative intracellular bacterial pathogens: a role for CD8+ T cells in immunity to Salmonella infection and the involvement of MHC class Ib molecules. J. Immunol. 162, 5398–5406 (1999).

    CAS  PubMed  Google Scholar 

  18. Lo, W.F. et al. Molecular mimicry mediated by MHC class Ib molecules after infection with gram-negative pathogens. Nat. Med. 6, 215–218 (2000).

    Article  CAS  Google Scholar 

  19. Sullivan, B.A., Kraj, P., Weber, D.A., Ignatowicz, L. & Jensen, P.E. Positive selection of a Qa-1-restricted T cell receptor with specificity for insulin. Immunity 17, 95–105 (2002).

    Article  CAS  Google Scholar 

  20. Transy, C. et al. A low polymorphic mouse H-2 class I gene from the Tla complex is expressed in a broad variety of cell types. J. Exp. Med. 166, 341–361 (1987).

    Article  Google Scholar 

  21. Soloski, M.J., DeCloux, A., Aldrich, C.J. & Forman, J. Structural and functional characteristics of the class IB molecule, Qa-1. Immunol. Rev. 147, 67–89 (1995).

    Article  CAS  Google Scholar 

  22. Moser, J.M., Gibbs, J., Jensen, P.E. & Lukacher, A.E. CD94-NKG2A receptors regulate antiviral CD8+ T cell responses. Nat. Immunol. 3, 189–195 (2002).

    Article  CAS  Google Scholar 

  23. Jiang, H. et al. Regulatory CD8+ T cells fine-tune the myelin basic protein-reactive T cell receptor Vβ repertoire during experimental autoimmune encephalomyelitis. Proc. Natl. Acad. Sci. USA 100, 8378–8383 (2003).

    Article  CAS  Google Scholar 

  24. Davies, A. et al. A peptide from heat shock protein 60 is the dominant peptide bound to Qa-1 in the absence of the MHC class Ia leader sequence peptide Qdm. J. Immunol. 170, 5027–5033 (2003).

    Article  CAS  Google Scholar 

  25. Tompkins, S.M., Kraft, J.R., Dao, C.T., Soloski, M.J. & Jensen, P.E. Transporters associated with antigen processing (TAP)-independent presentation of soluble insulin to α/β T cells by the class Ib gene product, Qa-1(b). J. Exp. Med. 188, 961–971 (1998).

    Article  CAS  Google Scholar 

  26. Seaman, M.S., Perarnau, B., Lindahl, K.F., Lemonnier, F.A. & Forman, J. Response to Listeria monocytogenes in mice lacking MHC class Ia molecules. J. Immunol. 162, 5429–5436 (1999).

    CAS  Google Scholar 

  27. Vance, R.E., Kraft, J.R., Altman, J.D., Jensen, P.E. & Raulet, D.H. Mouse CD94/NKG2A is a natural killer cell receptor for the nonclassical MHC class I molecule Qa-1b . J. Exp. Med. 188, 1841–1847 (1998).

    Article  CAS  Google Scholar 

  28. Noble, A., Pestano, G.A. & Cantor, H. Suppression of immune responses by CD8 T cells: I. Superantigen-activated CD8 cells induce unidirectional Fas-mediated apoptosis of antigen-activated CD4 cells. J. Immunol. 160, 559–565 (1998).

    CAS  PubMed  Google Scholar 

  29. Koh, D.R. et al. Less mortality but more relapses in experimental allergic encephalomyelitis in CD8−/− mice. Science 256, 1210–1213 (1992).

    Article  CAS  Google Scholar 

  30. Jansson, M., Panoutsakopoulou, V., Baker, J., Klein, L. & Cantor, H. Attenuated experimental autoimmune encephalomyelitis in Eta-1/osteopontin-deficient mice. J. Immunol. 168, 2096–2099 (2002).

    Article  CAS  Google Scholar 

  31. Steinman, L. Immunotherapy of multiple sclerosis: the end of the beginning. Curr. Opin. Immunol. 13, 597–600 (2001).

    Article  CAS  Google Scholar 

  32. Hauben, E. et al. Posttraumatic therapeutic vaccination with modified myelin self-antigen prevents complete paralysis while avoiding autoimmune disease. J. Clin. Invest. 108, 591–599 (2001).

    Article  CAS  Google Scholar 

  33. Jahng, A.W. et al. Activation of natural killer T cells potentiates or prevents experimental autoimmune encephalomyelitis. J. Exp. Med. 194, 1789–1799 (2001).

    Article  CAS  Google Scholar 

  34. Schott, E., Bonasio, R. & Ploegh, H.L. Elimination in vivo of developing T cells by natural killer cells. J. Exp. Med. 198, 1213–1224 (2003).

    Article  CAS  Google Scholar 

  35. Sakaguchi, S. et al. Immunologic tolerance maintained by CD25+ CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol Rev. 182, 18–32 (2001).

    Article  CAS  Google Scholar 

  36. von Herrath, M.G., Dockter, J. & Oldstone, M.B. How virus induces a rapid or slow onset insulin-dependent diabetes mellitus in a transgenic model. Immunity 1, 231–242 (1994).

    Article  CAS  Google Scholar 

  37. Kumar, V. & Sercarz, E.E. The involvement of T cell receptor peptide-specific regulatory CD4+ T cells in recovery from antigen-induced autoimmune disease. J. Exp. Med. 178, 909–916 (1993).

    Article  CAS  Google Scholar 

  38. Valitutti, S., Muller, S., Salio, M. & Lanzavecchia, A. Degradation of T cell receptor (TCR)-CD3-ζ complexes after antigenic stimulation. J. Exp. Med. 185, 1859–1864 (1997).

    Article  CAS  Google Scholar 

  39. Liu, H., Rhodes, M., Wiest, D.L. & Vignali, D.A. On the dynamics of TCR:CD3 complex cell surface expression and downmodulation. Immunity 13, 665–675 (2000).

    Article  CAS  Google Scholar 

  40. Avery, A.C. et al. Resistance to herpes stromal keratitis conferred by an IgG2a-derived peptide. Nature 376, 431–434 (1995).

    Article  CAS  Google Scholar 

  41. Zhao, Z.-S., Granucci, F., Yeh, L., Schaffer, P.A. & Cantor, H. Molecular mimicry by herpes simplex virus-1: autoimmune disease after viral infection. Science 279, 1344–1347 (1998).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Horner and R.A. DePinho (Dana Farber Cancer Institute) and A. Sharpe (Brigham and Women's Hospital) for the expertise provided by their transgenic mouse facilities; S. Kissler for technical advice and assistance; and A. Angel for assistance with preparation of the manuscript and figures. Supported in part by National Institutes of Health (AI 13600, AI37562 and AI 48125 to H.C.; and AI 07386 to D.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harvey Cantor.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, D., Ikizawa, K., Lu, L. et al. Analysis of regulatory CD8 T cells in Qa-1-deficient mice. Nat Immunol 5, 516–523 (2004). https://doi.org/10.1038/ni1063

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1063

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing