Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The inhibitory Fcγ receptor modulates autoimmunity by limiting the accumulation of immunoglobulin G+ anti-DNA plasma cells

Abstract

Deletion of the gene encoding the Fc immunoglobulin G receptor IIB (FcγRIIB) results in a fulminant, lupus-like disease in C57BL/6 but not BALB/c mice. Here we have investigated this strain-specific, epistatic loss of tolerance using gene-targeted immunoglobulin variable heavy-chain (VH) alleles 3H9 or 56R, which encode DNA-specific heavy chains, expressed on the C57BL/6 or BALB/c background. The combination of C57BL/6 and VH 56R (B6.56R) resulted in a loss of tolerance; hybridoma and single-cell analysis indicated an FcγRIIB-independent difference in immunoglobulin light-chain usage, consistent with an alteration in receptor editing. FcγRIIB deficiency resulted in an increase in immunoglobulin G (IgG) antibodies to DNA in the serum, an increased frequency of anti-DNA-reactive IgG+ B cells with a plasma cell phenotype and immune complex deposition in the glomeruli and renal disease in B6.56R mice. Thus, FcγRIIB provides a distal peripheral checkpoint to limit the accumulation of autoreactive plasma cells, thereby maintaining tolerance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Emergence of anti-DNA in 56R Igh knock-in mice on the C57BL/6 background.
Figure 2: Anti-DNA antibodies are derived from the 56R Igh knock-in (IgMa) allele.
Figure 3: Vκ usage and receptor editing for the 56R Igh knock-in on the C57BL/6 and BALB/c backgrounds.
Figure 4: FcγRIIB deficiency enhances production of IgG anti-DNA in the serum of C57BL/6 mice carrying Igh knock-in allele.
Figure 5: Increased plasma cells in B6.56R Fcgr2b−/− mice.
Figure 6: IgG anti-DNA antibodies from B6.56R Fcgr2b−/− mice are sufficient to induce glomerulonephritis.

Similar content being viewed by others

References

  1. Peter, J.B. & Shoenfeld, Y. Autoantibodies 534–539 (Elsevier, New York, 1996).

  2. Wakeland, E.K., Liu, K., Graham, R.R. & Behrens, T.W. Delineating the genetic basis of systemic lupus erythematosus. Immunity 15, 397–408 (2001).

    Article  CAS  Google Scholar 

  3. Fields, M.L. & Erikson, J. The regulation of lupus-associated autoantibodies: immunoglobulin transgenic models. Curr. Opin. Immunol. 15, 709–717 (2003).

    Article  CAS  Google Scholar 

  4. Ravetch, J.V. & Lanier, L.L. Immune inhibitory receptors. Science 290, 84–89 (2000).

    Article  CAS  Google Scholar 

  5. Bolland, S. & Ravetch, J.V. Spontaneous autoimmune disease in FcγRII deficient mice results from strain-specific epistasis. Immunity (2000).

  6. Li, H., Jiang, Y., Prak, E.L., Radic, M. & Weigert, M. Editors and editing of anti-DNA receptors. Immunity 15, 947–957 (2001).

    Article  CAS  Google Scholar 

  7. Radic, M.Z. & Weigert, M. Genetic and structural evidence for antigen selection of anti-DNA antibodies. Annu. Rev. Immunol. 12, 487–520 (1994).

    Article  CAS  Google Scholar 

  8. Sekiguchi, D.R. et al. Chronic graft-versus-host in Ig knockin transgenic mice abrogates B cell tolerance in anti-double-stranded DNA B cells. J. Immunol. 168, 4142–4153 (2002).

    Article  CAS  Google Scholar 

  9. Sekiguchi, D.R., Eisenberg, R.A. & Weigert, M. Secondary heavy chain rearrangement: a mechanism for generating anti-double-stranded DNA B cells. J. Exp. Med. 197, 27–39 (2003).

    Article  CAS  Google Scholar 

  10. Li, Y., Li, H., Ni, D. & Weigert, M. Anti-DNA B cells in MRL/lpr mice show altered differentiation and editing pattern. J. Exp. Med. 196, 1543–1552 (2002).

    Article  CAS  Google Scholar 

  11. Ravetch, J.V. Fc receptors. In Fundamental Immunology 5th edn. (ed. Paul, W.E.) 685–700 (Lippincott-Raven, Philadelphia, 2003).

  12. Clynes, R., Dumitru, C. & Ravetch, J.V. Uncoupling of immune complex formation and kidney damage in autoimmune glomerulonephritis. Science 279, 1052–1054 (1998).

    Article  CAS  Google Scholar 

  13. Clynes, R. et al. Modulation of immune complex-induced inflammation in vivo by the coordinate expression of activation and inhibitory Fc receptors. J. Exp. Med. 189, 179–185 (1999).

    Article  CAS  Google Scholar 

  14. Pearse, R.N. et al. SHIP recruitment attenuates FcγRIIB-induced B cell apoptosis. Immunity 10, 753–760 (1999).

    Article  CAS  Google Scholar 

  15. Qin, D. et al. Fcγ receptor IIB on follicular dendritic cells regulates the B cell recall response. J. Immunol. 164, 6268–6275 (2000).

    Article  CAS  Google Scholar 

  16. Yuasa, T. et al. Deletion of Fcγ receptor IIB renders H-2b mice susceptible to collagen-induced arthritis. J. Exp. Med. 189, 187–194 (1999).

    Article  CAS  Google Scholar 

  17. Nakamura, A. et al. Fcgamma receptor IIB-deficient mice develop Goodpasture's syndrome upon immunization with type IV collagen: a novel murine model for autoimmune glomerular basement membrane disease. J. Exp. Med. 191, 899–906 (2000).

    Article  CAS  Google Scholar 

  18. Bolland, S., Yim, Y.S., Tus, K., Wakeland, E.K. & Ravetch, J.V. Genetic modifiers of systemic lupus erythematosus in FcγRIIB−/− mice. J. Exp. Med. 195, 1167–1174 (2002).

    Article  CAS  Google Scholar 

  19. Kaushik, A. & Lim, W. The primary antibody repertoire of normal, immunodeficient and autoimmune mice is characterized by differences in V gene expression. Res. Immunol. 147, 9–26 (1996).

    Article  CAS  Google Scholar 

  20. Wood, D.L. & Coleclough, C. Different joining region J elements of the murine κ immunoglobulin light chain locus are used at markedly different frequencies. Proc. Natl. Acad. Sci. USA 81, 4756–4760 (1984).

    Article  CAS  Google Scholar 

  21. Nishi, M., Kataoka, T. & Honjo, T. Preferential rearrangement of the immunoglobulin κ chain joining region Jκ1 and Jκ2 segments in mouse spleen DNA. Proc. Natl. Acad. Sci. USA 82, 6399–6403 (1985).

    Article  CAS  Google Scholar 

  22. Takai, T., Ono, M., Hikida, M., Ohmori, H. & Ravetch, J.V. Augmented humoral and anaphylactic responses in FcγRII-deficient mice. Nature 379, 346–349 (1996).

    Article  CAS  Google Scholar 

  23. Nemazee, D.A. & Burki, K. Clonal deletion of B lymphocytes in a transgenic mouse bearing anti-MHC class I antibody genes. Nature 337, 562–566 (1989).

    Article  CAS  Google Scholar 

  24. Goodnow, C.C. et al. Altered immunoglobulin expression and functional silencing of self-reactive B lymphocytes in transgenic mice. Nature 334, 676–682 (1988).

    Article  CAS  Google Scholar 

  25. Gay, D., Saunders, T., Camper, S. & Weigert, M. Receptor editing: an approach by autoreactive B cells to escape tolerance. J. Exp. Med. 177, 999–1008 (1993).

    Article  CAS  Google Scholar 

  26. Tiegs, S.L., Russell, D.M. & Nemazee, D. Receptor editing in self-reactive bone marrow B cells. J. Exp. Med. 177, 1009–1020 (1993).

    Article  CAS  Google Scholar 

  27. Wardemann, H., Hammersen, J. & Nussenzweig, M.C. Human autoantibody silencing by immunoglobulin light chains. J. Exp. Med. 200, 191–199 (2004).

    Article  CAS  Google Scholar 

  28. Bona, C.A. & Stevenson, F.K. B cells producing pathogenic autoantibodies. In Molecular Biology of B cells (eds. Honjo, T., Alt, F.W. & Neuberger, M.S.) 381–402 (Elsevier, Boston, 2004).

    Chapter  Google Scholar 

  29. Wardemann, H. et al. Predominant autoantibody production by early human B cell precursors. Science 301, 1374–1377 (2003).

    Article  CAS  Google Scholar 

  30. Pritchard, N.R. & Smith, K.G. B cell inhibitory receptors and autoimmunity. Immunology 108, 263–273 (2003).

    Article  CAS  Google Scholar 

  31. Xiu, Y. et al. Transcriptional regulation of Fcgr2b gene by polymorphic promoter region and its contribution to humoral immune responses. J. Immunol. 169, 4340–4346 (2002).

    Article  CAS  Google Scholar 

  32. Chen, C., Nagy, Z., Prak, E.L. & Weigert, M. Immunoglobulin heavy chain gene replacement: a mechanism of receptor editing. Immunity 3, 747–755 (1995).

    Article  CAS  Google Scholar 

  33. Takai, T., Ono, M., Hikida, M., Ohmori, H. & Ravetch, J.V. Augmented humoral and anaphylactic responses in FcγRII-deficient mice. Nature 379, 346–349 (1996).

    Article  CAS  Google Scholar 

  34. Prak, E.L., Trounstine, M., Huszar, D. & Weigert, M. Light chain editing in κ-deficient animals: a potential mechanism of B cell tolerance. J. Exp. Med. 180, 1805–1815 (1994).

    Article  CAS  Google Scholar 

  35. Schlissel, M.S. & Baltimore, D. Activation of immunoglobulin κ gene rearrangement correlates with induction of germline κ gene transcription. Cell 58, 1001–1007 (1989).

    Article  CAS  Google Scholar 

  36. Huse, W.D. et al. Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda. Science 246, 1275–1281 (1989).

    Article  CAS  Google Scholar 

  37. Ramsden, D.A., Paige, C.J. & Wu, G.E. Kappa light chain rearrangement in mouse fetal liver. J. Immunol. 153, 1150–1160 (1994).

    CAS  PubMed  Google Scholar 

  38. Prak, E.L. & Weigert, M. Light chain replacement: a new model for antibody gene rearrangement. J. Exp. Med. 182, 541–548 (1995).

    Article  CAS  Google Scholar 

  39. Mohan, C., Adams, S., Stanik, V. & Datta, S.K. Nucleosome: a major immunogen for pathogenic autoantibody-inducing T cells of lupus. J. Exp. Med. 177, 1367–1381 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank our colleagues, M. Nussenzweig, B. Diamond, M. Weigert and M. Madio for providing comments; P. Smith, C. Ryder, M. Patt, L. Josephs and P. Gel for technical assistance; and C. Ritter for administrative support. Supported by the National Institutes of Health and the Alliance for Lupus Research (J.V.R.), Yamada Science Foundation in Japan (H.F.) and Deutsche Forschungsgemeinschaft (F.N.; NI711/2-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey V Ravetch.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Normal B cell development in B6.56R Fcgr2b−/− mice. (PDF 572 kb)

Supplementary Table 1

Primer list (PDF 43 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukuyama, H., Nimmerjahn, F. & Ravetch, J. The inhibitory Fcγ receptor modulates autoimmunity by limiting the accumulation of immunoglobulin G+ anti-DNA plasma cells. Nat Immunol 6, 99–106 (2005). https://doi.org/10.1038/ni1151

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1151

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing