Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CD28 costimulation of developing thymocytes induces Foxp3 expression and regulatory T cell differentiation independently of interleukin 2

Abstract

Efficient generation of regulatory T cells (Treg cells) in the thymus requires CD28 costimulation, but it is not known why. Here, molecular mapping of CD28 costimulation showed that Treg cell generation requires a motif that binds the tyrosine kinase Lck, precisely the same motif that is required for CD28 costimulation of interleukin 2 production. Nevertheless, CD28 costimulation provides more than interleukin 2 to developing Treg cells, as CD28 costimulation of T cell receptor–signaled double-positive thymocytes induced expression of Foxp3, considered to be the Treg 'master gene', as well as GITR and CTLA-4, two proteins expressed on Treg cells. Thus, CD28 costimulation directly signals developing thymocytes to express Foxp3 and to initiate the Treg cell differentiation program.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CD28 requirement for generation of Treg cells in the thymus.
Figure 2: Generation of CD28 transgenic mice.
Figure 3: Molecular mapping of the CD28 binding motifs required for CD28-dependent IL-2 production and for IL-2-dependent proliferation.
Figure 4: Generation of CD4+CD25+ T cells in B6 + Il2−/− → B6 mixed radiation bone marrow chimeras.
Figure 5: Generation of CD4+CD25+ T cells in mixed bone marrow chimeras.
Figure 6: Induction of Foxp3 expression in immature thymocytes.
Figure 7: CD28 cosimulation of TCR-signaled DP thymocytes initiates Treg cell differentiation.
Figure 8: Molecular mapping of CD28 costimulatory signals that induce Foxp3 and CTLA-4 expression in developing thymocytes.

Similar content being viewed by others

References

  1. Marrack, P. et al. The effect of thymus environment on T cell development and tolerance. Cell 53, 627–634 (1988).

    Article  CAS  PubMed  Google Scholar 

  2. Ramsdell, F., Lantz, T. & Fowlkes, B.J. A nondeletional mechanism of thymic self tolerance. Science 246, 1038–1041 (1989).

    Article  CAS  PubMed  Google Scholar 

  3. Roberts, J.L., Sharrow, S.O. & Singer, A. Clonal deletion and clonal anergy in the thymus induced by cellular elements with different radiation sensitivities. J. Exp. Med. 171, 935–940 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Bhandoola, A. et al. Peripheral expression of self-MHC-II influences the reactivity and self-tolerance of mature CD4+ T cells: evidence from a lymphopenic T cell model. Immunity 17, 425–436 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Walker, L.S. & Abbas, A.K. The enemy within: keeping self-reactive T cells at bay in the periphery. Nat. Rev. Immunol. 2, 11–19 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Sakaguchi, S. Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu. Rev. Immunol. 22, 531–562 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Sakaguchi, S. et al. Immunologic tolerance maintained by CD25+CD4+ regulatory T cells: their common role in controlling autoimmunity, tumor immunity, and transplantation tolerance. Immunol. Rev. 182, 18–32 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Shevach, E.M., McHugh, R.S., Piccirillo, C.A. & Thornton, A.M. Control of T-cell activation by CD4+CD25+ suppressor T cells. Immunol. Rev. 182, 58–67 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Shevach, E.M. CD4+CD25+ suppressor T cells: more questions than answers. Nat. Rev. Immunol. 2, 389–400 (2002).

    Article  CAS  PubMed  Google Scholar 

  10. Takahashi, T. et al. Immunologic self-tolerance maintained by CD25+CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J. Exp. Med. 192, 303–310 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Read, S., Malmstrom, V. & Powrie, F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation. J. Exp. Med. 192, 295–302 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shimizu, J., Yamazaki, S., Takahashi, T., Ishida, Y. & Sakaguchi, S. Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance. Nat. Immunol. 3, 135–142 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. McHugh, R.S. et al. CD4+CD25+ immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity 16, 311–323 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Bensinger, S.J., Bandeira, A., Jordan, M.S., Caton, A.J. & Laufer, T.M. Major histocompatibility complex class II-positive cortical epithelium mediates the selection of CD4+25+ immunoregulatory T cells. J. Exp. Med. 194, 427–438 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jordan, M.S. et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat. Immunol. 2, 301–306 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Apostolou, I., Sarukhan, A., Klein, L. & von Boehmer, H. Origin of regulatory T cells with known specificity for antigen. Nat. Immunol. 3, 756–763 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003).

    Article  CAS  PubMed  Google Scholar 

  18. Fontenot, J.D., Gavin, M.A. & Rudensky, A.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Khattri, R., Cox, T., Yasayko, S.A. & Ramsdell, F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat. Immunol. 4, 337–342 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Kishimoto, H. & Sprent, J. Several different cell surface molecules control negative selection of medullary thymocytes. J. Exp. Med. 190, 65–73 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Punt, J.A., Osborne, B.A., Takahama, Y., Sharrow, S.O. & Singer, A. Negative selection of CD4+CD8+ thymocytes by T cell receptor-induced apoptosis requires a costimulatory signal that can be provided by CD28. J. Exp. Med. 179, 709–713 (1994).

    Article  CAS  PubMed  Google Scholar 

  22. Punt, J.A., Havran, W., Abe, R., Sarin, A. & Singer, A. T cell receptor (TCR)-induced death of immature CD4+CD8+ thymocytes by two distinct mechanisms differing in their requirement for CD28 costimulation: implications for negative selection in the thymus. J. Exp. Med. 186, 1911–1922 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sharpe, A.H. & Freeman, G.J. The B7–CD28 superfamily. Nat. Rev. Immunol. 2, 116–126 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Salomon, B. et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12, 431–440 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Tang, Q. et al. Cutting edge: CD28 controls peripheral homeostasis of CD4+CD25+ regulatory T cells. J. Immunol. 171, 3348–3352 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Jenkins, M.K., Taylor, P.S., Norton, S.D. & Urdahl, K.B. CD28 delivers a costimulatory signal involved in antigen-specific IL-2 production by human T cells. J. Immunol. 147, 2461–2466 (1991).

    CAS  PubMed  Google Scholar 

  27. Boise, L.H. et al. CD28 costimulation can promote T cell survival by enhancing the expression of Bcl-XL. Immunity 3, 87–98 (1995).

    CAS  PubMed  Google Scholar 

  28. Alegre, M.L., Frauwirth, K.A. & Thompson, C.B. T-cell regulation by CD28 and CTLA-4. Nat. Rev. Immunol. 1, 220–228 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Oehen, S., Feng, L., Xia, Y., Surh, C.D. & Hedrick, S.M. Antigen compartmentation and T helper cell tolerance induction. J. Exp. Med. 183, 2617–2626 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Pages, F. et al. Binding of phosphatidylinositol-3-OH kinase to CD28 is required for T-cell signalling. Nature 369, 327–329 (1994).

    CAS  PubMed  Google Scholar 

  31. Prasad, K.V. et al. T-cell antigen CD28 interacts with the lipid kinase phosphatidylinositol 3-kinase by a cytoplasmic Tyr(P)-Met-Xaa-Met motif. Proc. Natl. Acad. Sci. USA 91, 2834–2838 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Marengere, L.E. et al. The SH3 domain of Itk/Emt binds to proline-rich sequences in the cytoplasmic domain of the T cell costimulatory receptor CD28. J. Immunol. 159, 3220–3229 (1997).

    CAS  PubMed  Google Scholar 

  33. Holdorf, A.D. et al. Proline residues in CD28 and the Src homology (SH)3 domain of Lck are required for T cell costimulation. J. Exp. Med. 190, 375–384 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Papiernik, M., de Moraes, M.L., Pontoux, C., Vasseur, F. & Penit, C. Regulatory CD4 T cells: expression of IL-2Rα chain, resistance to clonal deletion and IL-2 dependency. Int. Immunol. 10, 371–378 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Malek, T.R., Yu, A., Vincek, V., Scibelli, P. & Kong, L. CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rβ-deficient mice. Implications for the nonredundant function of IL-2. Immunity 17, 167–178 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Almeida, A.R., Legrand, N., Papiernik, M. & Freitas, A.A. Homeostasis of peripheral CD4+ T cells: IL-2Rα and IL-2 shape a population of regulatory cells that controls CD4+ T cell numbers. J. Immunol. 169, 4850–4860 (2002).

    Article  PubMed  Google Scholar 

  37. Cibotti, R., Punt, J.A., Dash, K.S., Sharrow, S.O. & Singer, A. Surface molecules that drive T cell development in vitro in the absence of thymic epithelium and in the absence of lineage-specific signals. Immunity 6, 245–255 (1997).

    Article  CAS  PubMed  Google Scholar 

  38. McKean, D.J. et al. Maturation versus death of developing double-positive thymocytes reflects competing effects on Bcl-2 expression and can be regulated by the intensity of CD28 costimulation. J. Immunol. 166, 3468–3475 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Suzuki, H., Punt, J.A., Granger, L.G. & Singer, A. Asymmetric signaling requirements for thymocyte commitment to the CD4+ versus CD8+ T cell lineages: a new perspective on thymic commitment and selection. Immunity 2, 413–425 (1995).

    Article  CAS  PubMed  Google Scholar 

  40. Holdorf, A.D., Lee, K.H., Burack, W.R., Allen, P.M. & Shaw, A.S. Regulation of Lck activity by CD4 and CD28 in the immunological synapse. Nat. Immunol. 3, 259–264 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Viola, A., Schroeder, S., Sakakibara, Y. & Lanzavecchia, A. T lymphocyte costimulation mediated by reorganization of membrane microdomains. Science 283, 680–682 (1999).

    Article  CAS  PubMed  Google Scholar 

  42. Shahinian, A. et al. Differential T cell costimulatory requirements in CD28-deficient mice. Science 261, 609–612 (1993).

    Article  CAS  PubMed  Google Scholar 

  43. Okkenhaug, K. et al. A point mutation in CD28 distinguishes proliferative signals from survival signals. Nat. Immunol. 2, 325–332 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Burr, J.S. et al. Cutting edge: distinct motifs within CD28 regulate T cell proliferation and induction of Bcl-XL. J. Immunol. 166, 5331–5335 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Harada, Y. et al. Critical requirement for the membrane-proximal cytosolic tyrosine residue for CD28-mediated costimulation in vivo. J. Immunol. 166, 3797–3803 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Andres, P.G. et al. Distinct regions in the CD28 cytoplasmic domain are required for T helper type 2 differentiation. Nat. Immunol. 5, 435–442 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Brugnera, E. et al. Coreceptor reversal in the thymus: signaled CD4+8+ thymocytes initially terminate CD8 transcription even when differentiating into CD8+ T cells. Immunity 13, 59–71 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Sentman, C.L., Shutter, J.R., Hockenbery, D., Kanagawa, O. & Korsmeyer, S.J. bcl-2 inhibits multiple forms of apoptosis but not negative selection in thymocytes. Cell 67, 879–888 (1991).

    Article  CAS  PubMed  Google Scholar 

  49. Kaye, J. et al. Selective development of CD4+ T cells in transgenic mice expressing a class II MHC-restricted antigen receptor. Nature 341, 746–749 (1989).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A.S. Shaw for CD28 cDNA; S. Sharrow, L. Granger and T. Adam for flow cytometry; and E.M. Shevach, R.J. Hodes, A. Bhandoola and R. Bosselut for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred Singer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Purified Bcl-2 Tg DP thymocytes were first signaled overnight with anti-TCR plus anti-CD28 mAb's in various combinations (expressed as μg/ml), and then transferred into overnight 'recovery' cultures with medium alone. (PDF 124 kb)

Supplementary Fig. 2

Purified Bcl-2 Tg+ DP thymocytes from indicated CD28 Tg mice were stimulated overnight with immobilized anti-TCR (2μg/ml) and anti-CD28 (25μg/ml) mAb's as indicated, and then transferred into overnight recovery cultures. (PDF 102 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tai, X., Cowan, M., Feigenbaum, L. et al. CD28 costimulation of developing thymocytes induces Foxp3 expression and regulatory T cell differentiation independently of interleukin 2. Nat Immunol 6, 152–162 (2005). https://doi.org/10.1038/ni1160

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1160

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing