Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lymphocyte arrest requires instantaneous induction of an extended LFA-1 conformation mediated by endothelium-bound chemokines

Abstract

It is widely believed that rolling lymphocytes require successive chemokine-induced signaling for lymphocyte function–associated antigen 1 (LFA-1) to achieve a threshold avidity that will mediate lymphocyte arrest. Using an in vivo model of lymphocyte arrest, we show here that LFA-1-mediated arrest of lymphocytes rolling on high endothelial venules bearing LFA-1 ligands and chemokines was abrupt. In vitro flow chamber models showed that endothelium-presented but not soluble chemokines triggered instantaneous extension of bent LFA-1 in the absence of LFA-1 ligand engagement. To support lymphocyte adhesion, this extended LFA-1 conformation required immediate activation by its ligand, intercellular adhesion molecule 1. These data show that chemokine-triggered lymphocyte adhesiveness involves a previously unrecognized extension step that primes LFA-1 for ligand binding and firm adhesion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rolling lymphocytes do not undergo gradual deceleration before firm arrest.
Figure 2: Immobilized but not soluble chemokines stimulate LFA-1 adhesiveness to ICAM-1 under shear flow.
Figure 3: Soluble chemokines activate β2-subunit I-like domain neoepitopes associated with high affinity.
Figure 4: Immobilized chemokines stimulate the induction of extended (intermediate-affinity) rather than high-affinity LFA-1 conformations.
Figure 5: Cytoskeletal anchorage of LFA-1 is required for integrin activation by immobilized chemokines.
Figure 6: PBL priming by a soluble chemokine does not enhance LFA-1 activation by a second stimulus from a distinct immobilized chemokine.
Figure 7: Allosteric activation of the αL-subunit I-domain is critical for LFA-1 tether formation and stabilization by ICAM-1 and chemokine signals.
Figure 8: Talin suppression but not cleavage impairs outside-in ICAM-1 signaling and SDF-1-stimulated LFA-1 adhesion to ICAM-1.

Similar content being viewed by others

References

  1. Warnock, R.A., Askari, S., Butcher, E.C. & von Andrian, U.H. Molecular mechanisms of lymphocyte homing to peripheral lymph nodes. J. Exp. Med. 187, 205–216 (1998).

    Article  CAS  Google Scholar 

  2. Shimaoka, M., Takagi, J. & Springer, T.A. Conformational regulation of integrin structure and function. Annu. Rev. Biophys. Biomol. Struct. 31, 485–516 (2002).

    Article  CAS  Google Scholar 

  3. Carman, C.V. & Springer, T.A. Integrin avidity regulation: are changes in affinity and conformation underemphasized? Curr. Opin. Cell Biol. 15, 547–556 (2003).

    Article  CAS  Google Scholar 

  4. Salas, A. et al. Rolling adhesion through an extended conformation of integrin αLβ2 and relation to αI and βI-like domain interaction. Immunity 20, 393–406 (2004).

    Article  CAS  Google Scholar 

  5. Constantin, G. et al. Chemokines trigger immediate β2 integrin affinity and mobility changes: differential regulation and roles in lymphocyte arrest under flow. Immunity 13, 759–769 (2000).

    Article  CAS  Google Scholar 

  6. Stein, J.V. et al. The CC chemokine thymus-derived chemotactic agent 4 (TCA-4, secondary lymphoid tissue chemokine, 6Ckine, Exodus-2) triggers lymphocyte function-associated antigen 1-mediated arrest of rolling T lymphocytes in peripheral lymph node high endothelial venules. J. Exp. Med. 191, 61–76 (2000).

    Article  CAS  Google Scholar 

  7. Campbell, J.J., Hedrick, J., Zlotnik, A., Siani, M.A. & Thompson, D.A. Chemokines and the arrest of lymphocytes rolling under flow conditions. Science 279, 381–384 (1998).

    Article  CAS  Google Scholar 

  8. Sasaki, K., Okouchi, Y., Rothkotter, H.J. & Pabst, R. Ultrastructural localization of the intercellular adhesion molecule (ICAM-1) on the cell surface of high endothelial venules in lymph nodes. Anat. Rec. 244, 105–111 (1996).

    Article  CAS  Google Scholar 

  9. Beals, C.R., Edwards, A.C., Gottschalk, R.J., Kuijpers, T.W. & Staunton, D.E. CD18 activation epitopes induced by leukocyte activation. J. Immunol. 167, 6113–6122 (2001).

    Article  CAS  Google Scholar 

  10. Lum, A.F., Green, C.E., Lee, G.R., Staunton, D.E. & Simon, S.I. Dynamic regulation of LFA-1 activation and neutrophil arrest on intercellular adhesion molecule 1 (ICAM-1) in shear flow. J. Biol. Chem. 277, 20660–20670 (2002).

    Article  CAS  Google Scholar 

  11. Beglova, N., Blacklow, S.C., Takagi, J. & Springer, T.A. Cysteine-rich module structure reveals a fulcrum for integrin rearrangement upon activation. Nat. Struct. Biol. 9, 282–287 (2002).

    Article  CAS  Google Scholar 

  12. Xie, C. et al. The integrin α-subunit leg extends at a Ca2+-dependent epitope in the thigh/genu interface upon activation. Proc. Natl. Acad. Sci. USA 101, 15422–15427 (2004).

    Article  CAS  Google Scholar 

  13. Kucik, D.F., Dustin, M.L., Miller, J.M. & Brown, E.J. Adhesion-activating phorbol ester increases the mobility of leukocyte integrin LFA-1 in cultured lymphocytes. J. Clin. Invest. 97, 2139–2144 (1996).

    Article  CAS  Google Scholar 

  14. Lub, M., van Kooyk, Y., van Vliet, S.J. & Figdor, C.G. Dual role of the actin cytoskeleton in regulating cell adhesion mediated by the integrin lymphocyte function-associated molecule-1. Mol. Biol. Cell 8, 341–351 (1997).

    Article  CAS  Google Scholar 

  15. Kim, M., Carman, C.V., Yang, W., Salas, A. & Springer, T.A. The primacy of affinity over clustering in regulation of adhesiveness of the integrin αLβ2 . J. Cell Biol. 167, 1241–1253 (2004).

    Article  CAS  Google Scholar 

  16. Alon, R. & Feigelson, S. From rolling to arrest on blood vessels: leukocyte tap dancing on endothelial integrin ligands and chemokines at sub-second contacts. Semin. Immunol. 14, 93–104 (2002).

    Article  CAS  Google Scholar 

  17. Zhang, N., Hodge, D., Rogers, T.J. & Oppenheim, J.J. Ca2+-independent protein kinase Cs mediate heterologous desensitization of leukocyte chemokine receptors by opioid receptors. J. Biol. Chem. 278, 12729–12736 (2003).

    Article  CAS  Google Scholar 

  18. Shimaoka, M. et al. Structures of the αL I domain and its complex with ICAM-1 reveal a shape-shifting pathway for integrin regulation. Cell 112, 99–111 (2003).

    Article  CAS  Google Scholar 

  19. Huth, J.R. et al. NMR and mutagenesis evidence for an I domain allosteric site that regulates lymphocyte function-associated antigen 1 ligand binding. Proc. Natl. Acad. Sci. USA 97, 5231–5236 (2000).

    Article  CAS  Google Scholar 

  20. Kim, M., Carman, C.V. & Springer, T.A. Bidirectional transmembrane signaling by cytoplasmic domain separation in integrins. Science 301, 1720–1725 (2003).

    Article  CAS  Google Scholar 

  21. Tadokoro, S. et al. Talin binding to integrin β tails: a final common step in integrin activation. Science 302, 103–106 (2003).

    Article  CAS  Google Scholar 

  22. Monkley, S.J., Pritchard, C.A. & Critchley, D.R. Analysis of the mammalian talin2 gene TLN2. Biochem. Biophys. Res. Commun. 286, 880–885 (2001).

    Article  CAS  Google Scholar 

  23. Jung, U., Norman, K.E., Scharffetter-Kochanek, K., Beaudet, A.L. & Ley, K. Transit time of leukocytes rolling through venules controls cytokine-induced inflammatory cell recruitment in vivo. J. Clin. Invest. 102, 1526–1533 (1998).

    Article  CAS  Google Scholar 

  24. Ley, K., Allietta, M., Bullard, D.C. & Morgan, S. The importance of E-selectin for firm leukocyte adhesion in vivo. Circ. Res. 83, 287–294 (1998).

    Article  CAS  Google Scholar 

  25. Dustin, M.L., Bivona, T.G. & Philips, M.R. Membranes as messengers in T cell adhesion signaling. Nat. Immunol. 5, 363–372 (2004).

    Article  CAS  Google Scholar 

  26. Grabovsky, V., Dwir, O. & Alon, R. Endothelial chemokines destabilize L-selectin-mediated lymphocyte rolling without inducing selectin shedding. J. Biol. Chem. 277, 20640–20650 (2002).

    Article  CAS  Google Scholar 

  27. Shamri, R. et al. Chemokine-stimulation of lymphocyte α4 integrin avidity but not of LFA-1 avidity to endothelial ligands under shear flow requires cholesterol membrane rafts. J. Biol. Chem. 277, 40027–40035 (2002).

    Article  CAS  Google Scholar 

  28. Finger, E.B., Bruehl, R.E., Bainton, D.F. & Springer, T.A. A differential role for cell shape in neutrophil tethering and rolling on endothelial selectins under flow. J. Immunol. 157, 5085–5096 (1996).

    CAS  Google Scholar 

  29. Abitorabi, M.A., Pachynski, R.K., Ferrando, R.E., Tidswell, M. & Erle, D.J. Presentation of integrins on leukocyte microvilli: a role for the extracellular domain in determining membrane localization. J. Cell Biol. 139, 563–571 (1997).

    Article  CAS  Google Scholar 

  30. Sampath, R., Gallagher, P.J. & Pavalko, F.M. Cytoskeletal interactions with the leukocyte integrin β2 cytoplasmic tail. Activation-dependent regulation of associations with talin and α-actinin. J. Biol. Chem. 273, 33588–33594 (1998).

    Article  CAS  Google Scholar 

  31. Yan, B., Calderwood, D.A., Yaspan, B. & Ginsberg, M.H. Calpain cleavage promotes talin binding to the β3 integrin cytoplasmic domain. J. Biol. Chem. 276, 28164–28170 (2001).

    Article  CAS  Google Scholar 

  32. Pfaff, M., Liu, S., Erle, D.J. & Ginsberg, M.H. Integrin β cytoplasmic domains differentially bind to cytoskeletal proteins. J. Biol. Chem. 273, 6104–6109 (1998).

    Article  CAS  Google Scholar 

  33. Katagiri, K., Maeda, A., Shimonaka, M. & Kinashi, T. RAPL, a Rap1-binding molecule that mediates Rap1-induced adhesion through spatial regulation of LFA-1. Nat. Immunol. 4, 741–748 (2003).

    Article  CAS  Google Scholar 

  34. Giagulli, C. et al. RhoA and ζ PKC control distinct modalities of LFA-1 activation by chemokines critical role of LFA-1 affinity triggering in lymphocyte in vivo homing. Immunity 20, 25–35 (2004).

    Article  CAS  Google Scholar 

  35. Shimonaka, M. et al. Rap1 translates chemokine signals to integrin activation, cell polarization, and motility across vascular endothelium under flow. J. Cell Biol. 161, 417–427 (2003).

    Article  CAS  Google Scholar 

  36. Alon, R. et al. A novel genetic leukocyte adhesion deficiency in subsecond triggering of integrin avidity by endothelial chemokines results in impaired leukocyte arrest on vascular endothelium under shear flow. Blood 101, 4437–4445 (2003).

    Article  CAS  Google Scholar 

  37. Kinashi, T. et al. LAD-III, a leukocyte adhesion deficiency syndrome associated with defective Rap1 activation and impaired stabilization of integrin bonds. Blood 103, 1033–1036 (2004).

    Article  CAS  Google Scholar 

  38. Lupher, M.L., Jr et al. Cellular activation of leukocyte function-associated antigen-1 and its affinity are regulated at the I domain allosteric site. J. Immunol. 167, 1431–1439 (2001).

    Article  CAS  Google Scholar 

  39. Li, R. et al. Activation of integrin αIIβ3 by modulation of transmembrane helix associations. Science 300, 795–798 (2003).

    Article  CAS  Google Scholar 

  40. Huang, C. & Springer, T.A. A binding interface on the I domain of lymphocyte function-associated antigen-1 (LFA-1) required for specific interaction with intercellular adhesion molecule 1 (ICAM-1). J. Biol. Chem. 270, 19008–19116 (1995).

    Article  CAS  Google Scholar 

  41. Cabanas, C. & Hogg, N. Ligand intercellular adhesion molecule 1 has a necessary role in activation of integrin lymphocyte function-associated molecule 1. Proc. Natl. Acad. Sci. USA 90, 5838–5842 (1993).

    Article  CAS  Google Scholar 

  42. van Kooyk, Y. et al. Activation of LFA-1 through a Ca2+-dependent epitope stimulates lymphocyte adhesion. J. Cell Biol. 112, 345–354 (1991).

    Article  CAS  Google Scholar 

  43. Grabovsky, V. et al. Subsecond induction of α4 integrin clustering by immobilized chemokines enhances leukocyte capture and rolling under flow prior to firm adhesion to endothelium. J. Exp. Med. 192, 495–505 (2000).

    Article  CAS  Google Scholar 

  44. Cinamon, G., Shinder, V. & Alon, R. Shear forces promote lymphocyte migration across vascular endothelium bearing apical chemokines. Nat. Immunol. 2, 515–522 (2001).

    Article  CAS  Google Scholar 

  45. Maly, P. et al. The Fuc-TVII α1,3 fucosyltransferase controls leukocyte trafficking through an essential role in L-, E-, and P-selectin ligand biosynthesis. Cell 86, 643–653 (1996).

    Article  CAS  Google Scholar 

  46. Gauguet, J.M., Rosen, S.D., Marth, J.D. & Von Andrian, U.H. Core 2 branching β1,6-N-acetylglucosaminyltransferase and high endothelial cell N-acetylglucosamine-6-sulfotransferase exert differential control over B and T lymphocyte homing to peripheral lymph nodes. Blood 104, 4104–4112 (2004).

    Article  CAS  Google Scholar 

  47. Pries, A.R. A versatile video image analysis system for microcirculatory research. Int. J. Microcirc. Clin. Exp. 7, 327–345 (1988).

    CAS  Google Scholar 

  48. M'Rini, C. et al. A novel endothelial L-selectin ligand activity in lymph node medulla that is regulated by α1,3-fucosyltransferase-IV. J. Exp. Med. 198, 1301–1312 (2003).

    Article  CAS  Google Scholar 

  49. Sigal, A. et al. The LFA-1 integrin supports rolling adhesions on ICAM-1 under physiological shear flow in a permissive cellular environment. J. Immunol. 165, 442–452 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Schwarzbaum for editorial help. Supported by the German-Israeli Foundation for Scientific Research and Development, the Israel Science Foundation and MAIN, the EU6 Program for Migration and Inflammation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronen Alon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Instantaneous rolling velocities of 11 lymphocytes (cells a-k). (PDF 377 kb)

Supplementary Fig. 2

Immobilized but not soluble SDF-1 triggers instantaneous LFA-1 activation on lymphocytes tethered to and rolling on an inflamed endothelial surface. (PDF 106 kb)

Supplementary Fig. 3 (PDF 342 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shamri, R., Grabovsky, V., Gauguet, JM. et al. Lymphocyte arrest requires instantaneous induction of an extended LFA-1 conformation mediated by endothelium-bound chemokines. Nat Immunol 6, 497–506 (2005). https://doi.org/10.1038/ni1194

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1194

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing