Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enhanced Toll-like receptor responses in the absence of signaling adaptor DAP12

A Corrigendum to this article was published on 01 February 2009

This article has been updated

Abstract

DAP12 is a signaling adaptor containing an immunoreceptor tyrosine-based activation motif (ITAM) that pairs with receptors on myeloid cells and natural killer cells. We examine here the responses of mice lacking DAP12 to stimulation through Toll-like receptors (TLRs). Unexpectedly, DAP12-deficient macrophages produced higher concentrations of inflammatory cytokines in response to a variety of pathogenic stimuli. Additionally, macrophages deficient in spleen tyrosine kinase (Syk), which signals downstream of DAP12, showed a phenotype identical to that of DAP12-deficient macrophages. DAP12-deficient mice were more susceptible to endotoxic shock and had enhanced resistance to infection by the intracellular bacterium Listeria monocytogenes. These data suggest that one or more DAP12-pairing receptors negatively regulate signaling through TLRs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DAP12-deficient macrophages secrete increased amounts of cytokines after TLR stimulation.
Figure 2: DAP12-deficient macrophages produce more TNF after TLR stimulation.
Figure 3: Reintroduction of DAP12 reduces the TNF production by DAP12-deficient macrophages in an ITAM-dependent manner.
Figure 4: Syk-deficient macrophages secrete increased amounts of proinflammatory cytokines in response to TLR stimulation.
Figure 5: Soluble inhibitory factor production does not explain differences between wild-type and DAP12-deficient macrophages.
Figure 6: LPS-induced ERK phosphorylation is increased in DAP12-deficient macrophages.
Figure 7: DAP12-deficient mice are more susceptible to endotoxic shock than wild-type mice.
Figure 8: DAP12-deficient mice have an enhanced innate immune response to infection with L. monocytogenes.

Similar content being viewed by others

Change history

  • 16 January 2009

    NOTE: In the version of this article initially published, the dose of D-galactosamine for the endotoxic shock experiments described in the Methods section (20 μg) was incorrect. The correct dose is 20 mg. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Akira, S. & Takeda, K. Toll-like receptor signalling. Nat. Rev. Immunol. 4, 499–511 (2004).

    Article  CAS  Google Scholar 

  2. Lanier, L.L. & Bakker, A.B. The ITAM-bearing transmembrane adaptor DAP12 in lymphoid and myeloid cell function. Immunol. Today 21, 611–614 (2000).

    Article  CAS  Google Scholar 

  3. Bouchon, A., Dietrich, J. & Colonna, M. Cutting edge: inflammatory responses can Be triggered by TREM-1, a novel receptor expressed on neutrophils and monocytes. J. Immunol. 164, 4991–4995 (2000).

    Article  CAS  Google Scholar 

  4. Bouchon, A., Facchetti, F., Weigand, M.A. & Colonna, M. TREM-1 amplifies inflammation and is a crucial mediator of septic shock. Nature 410, 1103–1107 (2001).

    Article  CAS  Google Scholar 

  5. Daws, M.R., Lanier, L.L., Seaman, W.E. & Ryan, J.C. Cloning and characterization of a novel mouse myeloid DAP12-associated receptor family. Eur. J. Immunol. 31, 783–791 (2001).

    Article  CAS  Google Scholar 

  6. Chung, D.H., Seaman, W.E. & Daws, M.R. Characterization of TREM-3, an activating receptor on mouse macrophages: definition of a family of single Ig domain receptors on mouse chromosome 17. Eur. J. Immunol. 32, 59–66 (2002).

    Article  CAS  Google Scholar 

  7. Yotsumoto, K. et al. Paired activating and inhibitory immunoglobulin-like receptors, MAIR-I and MAIR-II, regulate mast cell and macrophage activation. J. Exp. Med. 198, 223–233 (2003).

    Article  CAS  Google Scholar 

  8. Wright, G.J. et al. Characterization of the CD200 receptor family in mice and humans and their interactions with CD200. J. Immunol. 171, 3034–3046 (2003).

    Article  CAS  Google Scholar 

  9. Dietrich, J., Cella, M., Seiffert, M., Buhring, H.J. & Colonna, M. Cutting edge: signal-regulatory protein β1 is a DAP12-associated activating receptor expressed in myeloid cells. J. Immunol. 164, 9–12 (2000).

    Article  CAS  Google Scholar 

  10. Tomasello, E. et al. Association of signal-regulatory proteins β with KARAP/DAP-12. Eur. J. Immunol. 30, 2147–2156 (2000).

    Article  CAS  Google Scholar 

  11. Shiratori, I., Ogasawara, K., Saito, T., Lanier, L.L. & Arase, H. Activation of natural killer cells and dendritic cells upon recognition of a novel CD99-like ligand by paired immunoglobulin-like type 2 receptor. J. Exp. Med. 199, 525–533 (2004).

    Article  CAS  Google Scholar 

  12. Bakker, A.B., Baker, E., Sutherland, G.R., Phillips, J.H. & Lanier, L.L. Myeloid DAP12-associating lectin (MDL)-1 is a cell surface receptor involved in the activation of myeloid cells. Proc. Natl. Acad. Sci. USA 96, 9792–9796 (1999).

    Article  CAS  Google Scholar 

  13. Diefenbach, A. et al. Selective associations with signaling proteins determine stimulatory versus costimulatory activity of NKG2D. Nat. Immunol. 3, 1142–1149 (2002).

    Article  CAS  Google Scholar 

  14. Gilfillan, S., Ho, E.L., Cella, M., Yokoyama, W.M. & Colonna, M. NKG2D recruits two distinct adapters to trigger NK cell activation and costimulation. Nat. Immunol. 3, 1150–1155 (2002).

    Article  CAS  Google Scholar 

  15. Bakker, A.B. et al. DAP12-deficient mice fail to develop autoimmunity due to impaired antigen priming. Immunity 13, 345–353 (2000).

    Article  CAS  Google Scholar 

  16. Tomasello, E. et al. Combined natural killer cell and dendritic cell functional deficiency in KARAP/DAP12 loss-of-function mutant mice. Immunity 13, 355–364 (2000).

    Article  CAS  Google Scholar 

  17. Colonna, M. & Facchetti, F. TREM-1 (triggering receptor expressed on myeloid cells): a new player in acute inflammatory responses. J. Infect. Dis. 187 (suppl. 2), S397–S401 (2003).

    Article  CAS  Google Scholar 

  18. Turner, M., Schweighoffer, E., Colucci, F., Di Santo, J.P. & Tybulewicz, V.L. Tyrosine kinase SYK: essential functions for immunoreceptor signalling. Immunol. Today 21, 148–154 (2000).

    Article  CAS  Google Scholar 

  19. Daws, M.R. et al. Pattern recognition by TREM-2: binding of anionic ligands. J. Immunol. 171, 594–599 (2003).

    Article  CAS  Google Scholar 

  20. Bleharski, J.R. et al. A role for triggering receptor expressed on myeloid cells-1 in host defense during the early-induced and adaptive phases of the immune response. J. Immunol. 170, 3812–3818 (2003).

    Article  CAS  Google Scholar 

  21. Radsak, M.P., Salih, H.R., Rammensee, H.G. & Schild, H. Triggering receptor expressed on myeloid cells-1 in neutrophil inflammatory responses: differential regulation of activation and survival. J. Immunol. 172, 4956–4963 (2004).

    Article  CAS  Google Scholar 

  22. Mocsai, A. et al. The immunomodulatory adapter proteins DAP12 and Fc receptor γ-chain (FcRγ) regulate development of functional osteoclasts through the Syk tyrosine kinase. Proc. Natl. Acad. Sci. USA 101, 6158–6163 (2004).

    Article  CAS  Google Scholar 

  23. Turner, M. et al. Perinatal lethality and blocked B-cell development in mice lacking the tyrosine kinase Syk. Nature 378, 298–302 (1995).

    Article  CAS  Google Scholar 

  24. Mocsai, A., Zhou, M., Meng, F., Tybulewicz, V.L. & Lowell, C.A. Syk is required for integrin signaling in neutrophils. Immunity 16, 547–558 (2002).

    Article  CAS  Google Scholar 

  25. Pasparakis, M., Alexopoulou, L., Episkopou, V. & Kollias, G. Immune and inflammatory responses in TNF α-deficient mice: a critical requirement for TNF α in the formation of primary B cell follicles, follicular dendritic cell networks and germinal centers, and in the maturation of the humoral immune response. J. Exp. Med. 184, 1397–1411 (1996).

    Article  CAS  Google Scholar 

  26. Pamer, E.G. Immune responses to Listeria monocytogenes. Nat. Rev. Immunol. 4, 812–823 (2004).

    Article  CAS  Google Scholar 

  27. Starr, T.K., Jameson, S.C. & Hogquist, K.A. Positive and negative selection of T cells. Annu. Rev. Immunol. 21, 139–176 (2003).

    Article  CAS  Google Scholar 

  28. Pasquier, B. et al. Identification of FcαRI as an inhibitory receptor that controls inflammation: dual role of FcRγ ITAM. Immunity 22, 31–42 (2005).

    CAS  PubMed  Google Scholar 

  29. Takahashi, K., Rochford, C.D. & Neumann, H. Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J. Exp. Med. 201, 647–657 (2005).

    Article  CAS  Google Scholar 

  30. Paloneva, J. et al. CNS manifestations of Nasu-Hakola disease: a frontal dementia with bone cysts. Neurology 56, 1552–1558 (2001).

    Article  CAS  Google Scholar 

  31. Gibot, S. et al. A soluble form of the triggering receptor expressed on myeloid cells-1 modulates the inflammatory response in murine sepsis. J. Exp. Med. 200, 1419–1426 (2004).

    Article  CAS  Google Scholar 

  32. Knapp, S. et al. Cutting edge: expression patterns of surface and soluble triggering receptor expressed on myeloid cells-1 in human endotoxemia. J. Immunol. 173, 7131–7134 (2004).

    Article  CAS  Google Scholar 

  33. Lanier, L.L. Face off—the interplay between activating and inhibitory immune receptors. Curr. Opin. Immunol. 13, 326–331 (2001).

    Article  CAS  Google Scholar 

  34. Brint, E.K. et al. ST2 is an inhibitor of interleukin 1 receptor and Toll-like receptor 4 signaling and maintains endotoxin tolerance. Nat. Immunol. 5, 373–379 (2004).

    Article  CAS  Google Scholar 

  35. Diehl, G.E. et al. TRAIL-R as a negative regulator of innate immune cell responses. Immunity 21, 877–889 (2004).

    Article  CAS  Google Scholar 

  36. Kinjyo, I. et al. SOCS1/JAB is a negative regulator of LPS-induced macrophage activation. Immunity 17, 583–591 (2002).

    Article  CAS  Google Scholar 

  37. Nakagawa, R. et al. SOCS-1 participates in negative regulation of LPS responses. Immunity 17, 677–687 (2002).

    Article  CAS  Google Scholar 

  38. Fukao, T. et al. PI3K-mediated negative feedback regulation of IL-12 production in DCs. Nat. Immunol. 3, 875–881 (2002).

    Article  CAS  Google Scholar 

  39. Burns, K. et al. Inhibition of interleukin 1 receptor/Toll-like receptor signaling through the alternatively spliced, short form of MyD88 is due to its failure to recruit IRAK-4. J. Exp. Med. 197, 263–268 (2003).

    Article  Google Scholar 

  40. Sly, L.M., Rauh, M.J., Kalesnikoff, J., Song, C.H. & Krystal, G. LPS-induced upregulation of SHIP is essential for endotoxin tolerance. Immunity 21, 227–239 (2004).

    Article  CAS  Google Scholar 

  41. Zhang, G. & Ghosh, S. Negative regulation of toll-like receptor-mediated signaling by Tollip. J. Biol. Chem. 277, 7059–7065 (2002).

    Article  CAS  Google Scholar 

  42. Chuang, T.H. & Ulevitch, R.J. Triad3A, an E3 ubiquitin-protein ligase regulating Toll-like receptors. Nat. Immunol. 5, 495–502 (2004).

    Article  CAS  Google Scholar 

  43. Boone, D.L. et al. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat. Immunol. 5, 1052–1060 (2004).

    Article  CAS  Google Scholar 

  44. Kobayashi, K. et al. IRAK-M is a negative regulator of Toll-like receptor signaling. Cell 110, 191–202 (2002).

    Article  CAS  Google Scholar 

  45. McVicar, D.W. et al. DAP12-mediated signal transduction in natural killer cells. a dominant role for the syk protein-tyrosine kinase. J. Biol. Chem. 273, 32934–32942 (1998).

    Article  CAS  Google Scholar 

  46. Snyder, M.R., Lucas, M., Vivier, E., Weyand, C.M. & Goronzy, J.J. Selective activation of the c-Jun NH(2)-terminal protein kinase signaling pathway by stimulatory KIR in the absence of KARAP/DAP12 in CD4(+) T Cells. J. Exp. Med. 197, 437–449 (2003).

    Article  CAS  Google Scholar 

  47. Bouchon, A., Hernandez-Munain, C., Cella, M. & Colonna, M.A. DAP12-mediated pathway regulates expression of CC chemokine receptor 7 and maturation of human dendritic cells. J. Exp. Med. 194, 1111–1122 (2001).

    Article  CAS  Google Scholar 

  48. Dumitru, C.D. et al. TNF-α induction by LPS is regulated posttranscriptionally via a Tpl2/ERK-dependent pathway. Cell 103, 1071–1083 (2000).

    Article  CAS  Google Scholar 

  49. Paloneva, J. et al. Loss-of-function mutations in TYROBP (DAP12) result in a presenile dementia with bone cysts. Nat. Genet. 25, 357–361 (2000).

    Article  CAS  Google Scholar 

  50. Humphrey, M.B. et al. The signaling adapter protein DAP12 regulates multinucleation during osteoclast development. J. Bone Miner. Res. 19, 224–234 (2004).

    Article  CAS  Google Scholar 

  51. Kaifu, T. et al. Osteopetrosis and thalamic hypomyelinosis with synaptic degeneration in DAP12-deficient mice. J. Clin. Invest. 111, 323–332 (2003).

    Article  CAS  Google Scholar 

  52. Nishiya, T. & DeFranco, A.L. Ligand-regulated chimeric receptor approach reveals distinctive subcellular localization and signaling properties of the Toll-like receptors. J. Biol. Chem. 279, 19008–19017 (2004).

    Article  CAS  Google Scholar 

  53. Lutz, M.B. et al. An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. J. Immunol. Methods 223, 77–92 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M.B. Humphrey for the DAP12 ITAM mutant construct and helpful discussions; Y. Hu for help with the generation of Syk-deficient chimeras; S. Watson for assistance in endotoxic shock experiments; C. Chu for help with dendritic cell cultures; T. Nishiya and D. Underhill for helpful discussions; and A. DeFranco for reading the manuscript. This work was supported by a grant from the Irvington Institute for Immunological Research (J.A.H.) and NIH grants CA89294 (L.L.L.) and DK58066 (to C.A.L.). L.L.L. is an American Cancer Society Research Professor and C.A.L. is a scholar of the Leukemia and Lymphoma Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lewis L Lanier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

DAP12-deficient macrophages produce more TNF and IL-6 in response to FcγRII/III crosslinking. (PDF 44 kb)

Supplementary Fig. 2

TLR stimulation of wild-type and DAP12-deficient dendritic cells. (PDF 50 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamerman, J., Tchao, N., Lowell, C. et al. Enhanced Toll-like receptor responses in the absence of signaling adaptor DAP12. Nat Immunol 6, 579–586 (2005). https://doi.org/10.1038/ni1204

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1204

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing