Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Notch signaling controls the generation and differentiation of early T lineage progenitors

An Erratum to this article was published on 01 August 2005

Abstract

Signaling by the transmembrane receptor Notch is critical for T lineage development, but progenitor subsets that first receive Notch signals have not been defined. Here we identify an immature subset of early T lineage progenitors (ETPs) in the thymus that expressed the tyrosine kinase receptor Flt3 and had preserved B lineage potential at low progenitor frequency. Notch signaling was active in ETPs and was required for generation of the ETP population. Additionally, Notch signals contributed to the subsequent differentiation of ETPs. In contrast, multipotent hematopoietic progenitors circulated in the blood even in the absence of Notch signaling, suggesting that critical Notch signals during early T lineage development are delivered early after thymic entry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: ETPs are equivalent to DN1a plus DN1b thymocytes.
Figure 2: Flt3 expression in early thymocyte progenitors.
Figure 3: Decreased numbers of thymocyte progenitors in Flt3L-deficient mice.
Figure 4: T lineage potential and differentiation of ETP subsets.
Figure 5: Expression of Notch target genes in early thymocyte progenitors.
Figure 6: Notch signaling is essential upstream of ETPs.
Figure 7: B lineage potential of ETP subsets.

Similar content being viewed by others

References

  1. Donskoy, E. & Goldschneider, I. Thymocytopoiesis is maintained by blood-borne precursors throughout postnatal life. A study in parabiotic mice. J. Immunol. 148, 1604–1612 (1992).

    CAS  PubMed  Google Scholar 

  2. Foss, D.L., Donskoy, E. & Goldschneider, I. The importation of hematogenous precursors by the thymus is a gated phenomenon in normal adult mice. J. Exp. Med. 193, 365–374 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Petrie, H.T., Hugo, P., Scollay, R. & Shortman, K. Lineage relationships and developmental kinetics of immature thymocytes: CD3, CD4, and CD8 acquisition in vivo and in vitro. J. Exp. Med. 172, 1583–1588 (1990).

    Article  CAS  PubMed  Google Scholar 

  4. Godfrey, D.I., Kennedy, J., Suda, T. & Zlotnik, A. A developmental pathway involving four phenotypically and functionally distinct subsets of CD3CD4CD8 triple-negative adult mouse thymocytes defined by CD44 and CD25 expression. J. Immunol. 150, 4244–4252 (1993).

    CAS  PubMed  Google Scholar 

  5. Allman, D. et al. Thymopoiesis independent of common lymphoid progenitors. Nat. Immunol. 4, 168–174 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Porritt, H.E. et al. Heterogeneity among DN1 prothymocytes reveals multiple progenitors with different capacities to generate T cell and non-T cell lineages. Immunity 20, 735–745 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Balciunaite, G., Ceredig, R. & Rolink, A.G. The earliest subpopulation of mouse thymocytes contains potent T, significant macrophage and natural killer, but no B lymphocyte potential. Blood 105, 1930–1936 (2004).

    Article  PubMed  Google Scholar 

  8. Schwarz, B.A. & Bhandoola, A. Circulating hematopoietic progenitors with T lineage potential. Nat. Immunol. 5, 953–960 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Kondo, M., Weissman, I.L. & Akashi, K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91, 661–672 (1997).

    Article  CAS  PubMed  Google Scholar 

  10. Martin, C.H. et al. Efficient thymic immigration of B220+ lymphoid-restricted bone marrow cells with T precursor potential. Nat. Immunol. 4, 866–873 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Radtke, F., Wilson, A., Mancini, S.J. & MacDonald, H.R. Notch regulation of lymphocyte development and function. Nat. Immunol. 5, 247–253 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Maillard, I., Fang, T. & Pear, W.S. Regulation of lymphoid development, differentiation and function by the Notch pathway. Annu. Rev. Immunol. 23, 945–974 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Radtke, F. et al. Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 10, 547–558 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Wilson, A., MacDonald, H.R. & Radtke, F. Notch 1-deficient common lymphoid precursors adopt a B cell fate in the thymus. J. Exp. Med. 194, 1003–1012 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Adolfsson, J. et al. Upregulation of Flt3 expression within the bone marrow LinSca1+c-kit+ stem cell compartment is accompanied by loss of self-renewal capacity. Immunity 15, 659–669 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Christensen, J.L. & Weissman, I.L. Flk-2 is a marker in hematopoietic stem cell differentiation: a simple method to isolate long-term stem cells. Proc. Natl. Acad. Sci. USA 98, 14541–14546 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Adolfsson, J. et al. Identification of flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell 121, 295–306 (2005).

    Article  CAS  PubMed  Google Scholar 

  18. Sitnicka, E. et al. Key role of flt3 ligand in regulation of the common lymphoid progenitor but not in maintenance of the hematopoietic stem cell pool. Immunity 17, 463–472 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Sitnicka, E. et al. Complementary signaling through flt3 and interleukin-7 receptor α is indispensable for fetal and adult B cell genesis. J. Exp. Med. 198, 1495–1506 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mackarehtschian, K. et al. Targeted disruption of the flk2/flt3 gene leads to deficiencies in primitive hematopoietic progenitors. Immunity 3, 147–161 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Weng, A.P. et al. Growth suppression of pre-T acute lymphoblastic leukemia cells by inhibition of notch signaling. Mol. Cell. Biol. 23, 655–664 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Maillard, I. et al. Mastermind critically regulates Notch-mediated lymphoid cell fate decisions. Blood 104, 1696–1702 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Schmitt, T.M. & Zuniga-Pflucker, J.C. Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro. Immunity 17, 749–756 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. D'Amico, A. & Wu, L. The early progenitors of mouse dendritic cells and plasmacytoid predendritic cells are within the bone marrow hemopoietic precursors expressing Flt3. J. Exp. Med. 198, 293–303 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Moore, T.A. & Zlotnik, A. Differential effects of Flk-2/Flt-3 ligand and stem cell factor on murine thymic progenitor cells. J. Immunol. 158, 4187–4192 (1997).

    CAS  PubMed  Google Scholar 

  26. McKenna, H.J. et al. Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood 95, 3489–3497 (2000).

    CAS  PubMed  Google Scholar 

  27. Deftos, M.L., Huang, E., Ojala, E.W., Forbush, K.A. & Bevan, M.J. Notch1 signaling promotes the maturation of CD4 and CD8 SP thymocytes. Immunity 13, 73–84 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bellavia, D. et al. Constitutive activation of NF-κB and T-cell leukemia/lymphoma in Notch3 transgenic mice. EMBO J. 19, 3337–3348 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ting, C.N., Olson, M.C., Barton, K.P. & Leiden, J.M. Transcription factor GATA-3 is required for development of the T-cell lineage. Nature 384, 474–478 (1996).

    Article  CAS  PubMed  Google Scholar 

  30. Hoflinger, S. et al. Analysis of Notch1 function by in vitro T cell differentiation of Pax5 mutant lymphoid progenitors. J. Immunol. 173, 3935–3944 (2004).

    Article  PubMed  Google Scholar 

  31. Rothenberg, E.V. & Taghon, T. Molecular Genetics of T Cell Development. Annu. Rev. Immunol. 23, 601–649 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Hendriks, R.W. et al. Expression of the transcription factor GATA-3 is required for the development of the earliest T cell progenitors and correlates with stages of cellular proliferation in the thymus. Eur. J. Immunol. 29, 1912–1918 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Pui, J.C. et al. Notch1 expression in early lymphopoiesis influences B versus T lineage determination. Immunity 11, 299–308 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Spangrude, G.J. & Scollay, R. Differentiation of hematopoietic stem cells in irradiated mouse thymic lobes. Kinetics and phenotype of progeny. J. Immunol. 145, 3661–3668 (1990).

    CAS  PubMed  Google Scholar 

  35. Scollay, R., Smith, J. & Stauffer, V. Dynamics of early T cells: prothymocyte migration and proliferation in the adult mouse thymus. Immunol. Rev. 91, 129–157 (1986).

    Article  CAS  PubMed  Google Scholar 

  36. Buza-Vidas, N. et al. Critical and complementary role of Flt3 and interleukin 7-receptor α signaling in T lymphocyte development. Blood 104, Abstract 112 (2004).

    Google Scholar 

  37. Yun, T.J. & Bevan, M.J. Notch-regulated ankyrin-repeat protein inhibits Notch1 signaling: multiple Notch1 signaling pathways involved in T cell development. J. Immunol. 170, 5834–5841 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Saito, T. et al. Notch2 is preferentially expressed in mature B cells and indispensable for marginal zone B lineage development. Immunity 18, 675–685 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Fryer, C.J., White, J.B. & Jones, K.A. Mastermind recruits CycC:CDK8 to phosphorylate the Notch ICD and coordinate activation with turnover. Mol. Cell 16, 509–520 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Lehar, S.M., Dooley, J., Farr, A.G. & Bevan, M.J. Notch ligands Delta1 and Jagged1 transmit distinct signals to T cell precursors. Blood 105, 1440–1447 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Schmitt, T.M., Ciofani, M., Petrie, H.T. & Zuniga-Pflucker, J.C. Maintenance of T cell specification and differentiation requires recurrent notch receptor-ligand interactions. J. Exp. Med. 200, 469–479 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Perry, S.S., Pierce, L.J., Slayton, W.B. & Spangrude, G.J. Characterization of thymic progenitors in adult mouse bone marrow. J. Immunol. 170, 1877–1886 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Perry, S.S. et al. L-selectin defines a bone marrow analog to the thymic early T-lineage progenitor. Blood 103, 2990–2996 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Igarashi, H., Gregory, S.C., Yokota, T., Sakaguchi, N. & Kincade, P.W. Transcription from the RAG1 locus marks the earliest lymphocyte progenitors in bone marrow. Immunity 17, 117–130 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Ordentlich, P. et al. Notch inhibition of E47 supports the existence of a novel signaling pathway. Mol. Cell. Biol. 18, 2230–2239 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Nie, L., Xu, M., Vladimirova, A. & Sun, X.H. Notch-induced E2A ubiquitination and degradation are controlled by MAP kinase activities. EMBO J. 22, 5780–5792 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Taghon, T., David, E.S., Zuniga-Pflucker, J.C. & Rothenberg, E.V. Delayed, asynchronous, and reversible T-lineage specification induced by Notch/Delta signaling. Genes Dev. 19, 965–978 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Han, H. et al. Inducible gene knockout of transcription factor recombination signal binding protein-J reveals its essential role in T versus B lineage decision. Int. Immunol. 14, 637–645 (2002).

    Article  CAS  PubMed  Google Scholar 

  49. Koch, U. et al. Subversion of the T/B lineage decision in the thymus by lunatic fringe-mediated inhibition of Notch-1. Immunity 15, 225–236 (2001).

    Article  CAS  PubMed  Google Scholar 

  50. Carlyle, J.R. & Zuniga-Pflucker, J.C. Lineage commitment and differentiation of T and natural killer lymphocytes in the fetal mouse. Immunol. Rev. 165, 63–74 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Ceredig, R. The ontogeny of B cells in the thymus of normal, CD3 epsilon knockout (KO), RAG-2 KO and IL-7 transgenic mice. Int. Immunol. 14, 87–99 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Hashimoto, Y., Montecino-Rodriguez, E., Leathers, H., Stephan, R.P. & Dorshkind, K. B-cell development in the thymus is limited by inhibitory signals from the thymic microenvironment. Blood 100, 3504–3511 (2002).

    Article  CAS  PubMed  Google Scholar 

  53. Goldschneider, I., Komschlies, K.L. & Greiner, D.L. Studies of thymocytopoiesis in rats and mice. I. Kinetics of appearance of thymocytes using a direct intrathymic adoptive transfer assay for thymocyte precursors. J. Exp. Med. 163, 1–17 (1986).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Carpenter, S. Mahmud, M. Velez, H. Sai and O. Shestova for technical assistance; D. Allman, G. Koretzky and B. Schwarz for critical reading of the manuscript; and R. Schretzenmair and H. Pletcher of the Abramson Cancer Center Flow Cytometry and Cell Sorting Shared Resource for technical expertise. Supported by the Swiss Society for Grants in Medicine and Biology (I.M.), the Damon Runyon Cancer Research Foundation (DRG-102-05; I.M.), the National Institutes of Health (R.M.G., J.C.A., W.S.P. and A.B.), the National Institutes of Health National Cancer Institute training program in Immunobiology of Normal and Neoplastic Lymphocytes (T32-CA-09140), the Leukemia and Lymphoma Society (Specialized Center of Research grant; W.S.P.) and the Commonwealth of Pennsylvania (Health Research Faculty Development Block Grant; W.S.P. and A.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avinash Bhandoola.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

In vitro B lineage potential of DN1 thymocyte fractions. (PDF 552 kb)

Supplementary Fig. 2

In vivo B lineage potential of ETPs was not related to contaminating DN1c cells. (PDF 1538 kb)

Supplementary Fig. 3

Notch-dependence of DN1a-e thymocyte fractions. (PDF 1488 kb)

Supplementary Fig. 4

Expansion of committed intrathymic B lineage progenitors in the absence of Notch signaling. (PDF 1242 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sambandam, A., Maillard, I., Zediak, V. et al. Notch signaling controls the generation and differentiation of early T lineage progenitors. Nat Immunol 6, 663–670 (2005). https://doi.org/10.1038/ni1216

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1216

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing